938 resultados para tidal mixing
Resumo:
A multidisciplinary oceanographic survey of the White Sea was carried out in the Gorlo Straight, Basin, and Kandalaksha Bay regions including estuaries of Niva, Kolvitza and Knyazhaya rivers. Hydrophysical study in the northern part of the Basin revealed long-lived step-like structures and inversions in vertical profiles of temperature and salinity, which formed due to tidal mixing of saline and cold Barents Sea waters and warmer White Sea waters in the Gorlo Straight. Biological studies revealed the main features of spatial distribution, as well as qualitative and quantitative composition of phyto- and zooplankton in all studied areas; tolerance of main zooplankton species to fresh water influence in estuaries was shown. Study of suspended matter in estuaries clearly demonstrated physicochemical transformations of material supplied by the rivers. Data on vertical particle flux in the deep part of the Kandalaksha Bay showed difference between the upper and near-bottom layers, which could result from sinking of spring phytoplankton bloom products and supply of terrigenic suspended matter from the nepheloid layer formed by tidal currents.
Resumo:
Small pelagic fishes are particularly abundant in areas with high environmental variability (zones of coastal upwelling and areas of tidal mixing and river discharge), and because of this, their abundance suffers large inter-annual and inter-decadal fluctuations. In Portugal, the most important species in terms of landings are European sardine, Atlantic horse mackerel and Atlantic chub mackerel. Small pelagic fish landings account for 62.8 % of the total fish biomass and represent 32.7 % of the economical value of all catches. We have investigated trends in landings of these small pelagic fishes and detected the effects of environmental factors in this fishery. In order to explain the variability of landings of small pelagic fishes, we have used official landings (1965-2012) for trawling and purse seine fisheries and applied generalized linear models, using the North Atlantic Oscillation index (NAO) (annual and winter NAO index), sea surface temperature (SST), wind data (strength and North-South and East-West wind components) and rainfall, as explanatory variables. Regression analysis was used to describe the relationship between landings and SST. The models explained between 50.16 and 51.07 % of the variability of the LPUE, with the most important factors being winter NAO index, SST and wind strength. The LPUE of European sardine and Atlantic horse mackerel was negatively correlated with SST, and LPUE of Atlantic chub mackerel was positively correlated with SST. The use of landings of three important species of small pelagic fishes allowed the detection of variations in landings associated with changes in sea water temperature and NAO index.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
The Mauritanian coastal area is one of the most biologically productive upwelling regions in the world ocean. Shipboard observations carried out during maximum upwelling season and short-term moored observations are used to investigate diapycnal mixing processes and to quantify diapycnal fluxes of nutrients. The observations indicate strong tide-topography interactions that are favored by near-critical angles occurring on large parts of the continental slope. Moored velocity observations reveal the existence of highly nonlinear internal waves and bores and levels of internal wave spectra are strongly elevated near the buoyancy frequency. Dissipation rates of turbulent kinetic energy at the slope and shelf determined from microstructure measurements in the upper 200 m averages to ? = 5 × 10-8 W kg-1. Particularly elevated dissipation rates were found at the continental slope close to the shelf break, being enhanced by a factor of 100 to 1000 compared to dissipation rates farther offshore. Vertically integrated dissipation rates per unit volume are strongest at the upper continental slope reaching values of up to 30 mW m-2. A comparison of fine-scale parameterizations of turbulent dissipation rates for shelf regions and the open ocean to the measured dissipation rates indicates deficiencies in reproducing the observations. Diapycnal nitrate fluxes above the continental slope at the base of the mixed layer yielding a mean value of 12 × 10-2 µmol m-2 s-1 are amongst the largest published to date. However, they seem to only represent a minor contribution (10% to 25%) to the net community production in the upwelling region.
Resumo:
In an estuary, mixing and dispersion are the result of the combination of large scale advection and small scale turbulence which are both complex to estimate. A field study was conducted in a small sub-tropical estuary in which high frequency (50 Hz) turbulent data were recorded continuously for about 48 hours. A triple decomposition technique was introduced to isolate the contributions of tides, resonance and turbulence in the flow field. A striking feature of the data set was the slow fluctuations which exhibited large amplitudes up to 50% the tidal amplitude under neap tide conditions. The triple decomposition technique allowed a characterisation of broader temporal scales of high frequency fluctuation data sampled during a number of full tidal cycles.
Resumo:
In an estuary, mixing and dispersion result from a combination of large-scale advection and smallscale turbulence, which are complex to estimate. The predictions of scalar transport and mixing are often inferred and rarely accurate, due to inadequate understanding of the contributions of these difference scales to estuarine recirculation. A multi-device field study was conducted in a small sub-tropical estuary under neap tide conditions with near-zero fresh water discharge for about 48 hours. During the study, acoustic Doppler velocimeters (ADV) were sampled at high frequency (50 Hz), while an acoustic Doppler current profiler (ADCP) and global positioning system (GPS) tracked drifters were used to obtain some lower frequency spatial distribution of the flow parameters within the estuary. The velocity measurements were complemented with some continuous measurement of water depth, conductivity, temperature and some other physiochemical parameters. Thorough quality control was carried out by implementation of relevant error removal filters on the individual data set to intercept spurious data. A triple decomposition (TD) technique was introduced to access the contributions of tides, resonance and ‘true’ turbulence in the flow field. The time series of mean flow measurements for both the ADCP and drifter were consistent with those of the mean ADV data when sampled within a similar spatial domain. The tidal scale fluctuation of velocity and water level were used to examine the response of the estuary to tidal inertial current. The channel exhibited a mixed type wave with a typical phase-lag between 0.035π– 0.116π. A striking feature of the ADV velocity data was the slow fluctuations, which exhibited large amplitudes of up to 50% of the tidal amplitude, particularly in slack waters. Such slow fluctuations were simultaneously observed in a number of physiochemical properties of the channel. The ensuing turbulence field showed some degree of anisotropy. For all ADV units, the horizontal turbulence ratio ranged between 0.4 and 0.9, and decreased towards the bed, while the vertical turbulence ratio was on average unity at z = 0.32 m and approximately 0.5 for the upper ADV (z = 0.55 m). The result of the statistical analysis suggested that the ebb phase turbulence field was dominated by eddies that evolved from ejection type process, while that of the flood phase contained mixed eddies with significant amount related to sweep type process. Over 65% of the skewness values fell within the range expected of a finite Gaussian distribution and the bulk of the excess kurtosis values (over 70%) fell within the range of -0.5 and +2. The TD technique described herein allowed the characterisation of a broader temporal scale of fluctuations of the high frequency data sampled within the durations of a few tidal cycles. The study provides characterisation of the ranges of fluctuation required for an accurate modelling of shallow water dispersion and mixing in a sub-tropical estuary.
Resumo:
In estuaries and natural water channels, the estimate of velocity and dispersion coefficients is critical to the knowledge of scalar transport and mixing. This estimate is rarely available experimentally at sub-tidal time scale in shallow water channels where high frequency is required to capture its spatio-temporal variation. This study estimates Lagrangian integral scales and autocorrelation curves, which are key parameters for obtaining velocity fluctuations and dispersion coefficients, and their spatio-temporal variability from deployments of Lagrangian drifters sampled at 10 Hz for a 4-hour period. The power spectral densities of the velocities between 0.0001 and 0.8 Hz were well fitted with a slope of 5/3 predicted by Kolmogorov’s similarity hypothesis within the inertial subrange, and were similar to the Eulerian power spectral previously observed within the estuary. The result showed that large velocity fluctuations determine the magnitude of the integral time scale, TL. Overlapping of short segments improved the stability of the estimate of TL by taking advantage of the redundant data included in the autocorrelation function. The integral time scales were about 20 s and varied by up to a factor of 8. These results are essential inputs for spatial binning of velocities, Lagrangian stochastic modelling and single particle analysis of the tidal estuary.
Resumo:
In an estuary, mixing and dispersion resulting from turbulence and small scale fluctuation has strong spatio-temporal variability which cannot be resolved in conventional hydrodynamic models while some models employs parameterizations large water bodies. This paper presents small scale diffusivity estimates from high resolution drifters sampled at 10 Hz for periods of about 4 hours to resolve turbulence and shear diffusivity within a tidal shallow estuary (depth < 3 m). Taylor's diffusion theorem forms the basis of a first order estimate for the diffusivity scale. Diffusivity varied between 0.001 – 0.02 m2/s during the flood tide experiment. The diffusivity showed strong dependence (R2 > 0.9) on the horizontal mean velocity within the channel. Enhanced diffusivity caused by shear dispersion resulting from the interaction of large scale flow with the boundary geometries was observed. Turbulence within the shallow channel showed some similarities with the boundary layer flow which include consistency with slope of 5/3 predicted by Kolmogorov's similarity hypothesis within the inertial subrange. The diffusivities scale locally by 4/3 power law following Okubo's scaling and the length scale scales as 3/2 power law of the time scale. The diffusivity scaling herein suggests that the modelling of small scale mixing within tidal shallow estuaries can be approached from classical turbulence scaling upon identifying pertinent parameters.
Resumo:
In general, competition between buoyancy mechanisms and mixing dynamics largely determines the water column structure in a shelf sea. A three dimensional baroclinic ocean model forced by surface heat fluxes and the 2.5 order Mellor-Yamada turbulence scheme is used to simulate the annual cycle of the temperature in the Bohai Sea. The difference between the sea surface temperature (SST) and sea bottom temperature (SBT) is used to examine the evolution of its vertical stratification. It is found that the water column is well-mixed from October to March and that the seasonal thermocline appears in April, peaks in July and then weakens afterwards, closely following the heat budget. In addition, the Loder parameter based on the topography and tidal current amplitude is also computed in order to examine tidal fronts in the BS, which are evident in summer months when the wind stirring mechanism is weak.
Resumo:
A single tidal cycle survey in a Lagrangian reference frame was conducted in autumn 2010 to evaluate the impact of short-term, episodic and enhanced turbulent mixing on large chain-forming phytoplankton. Observations of turbulence using a free-falling microstructure profiler were undertaken, along with near-simultaneous profiles with an in-line digital holographic camera at station L4 (50° 15′ N 4° 13′ W, depth 50 m) in the Western English Channel. Profiles from each instrument were collected hourly whilst following a drogued drifter. Results from an ADCP attached to the drifter showed pronounced vertical shear, indicating that the water column structure consisted of two layers, restricting interpretation of the Lagrangian experiment to the upper ~ 25 m. Atmospheric conditions deteriorated during the mid-point of the survey, resulting in values of turbulent dissipation reaching a maximum of 10− 4 W kg− 1 toward the surface in the upper 10 m. Chain-forming phytoplankton > 200 μm were counted using the data from the holographic camera for the two periods, before and after the enhanced mixing event. As mixing increased phytoplankton underwent chain breakage, were dispersed by advection through their removal from the upper to lower layer and subjected to aggregation with other suspended material. Depth averaged counts of phytoplankton were reduced from a maximum of around 2050 L− 1 before the increased turbulence, to 1070 L− 1 after, with each of these mechanisms contributing to this reduction. These results demonstrate the sensitivity of phytoplantkon populations to moderate increases in turbulent activity, yielding consequences for accurate forecasting of the role played by phytoplankton in climate studies and also for the ecosystem in general in their role as primary producers.
Resumo:
Here, the pelagic carbonate system and the ?13C signature of dissolved inorganic carbonate (DIC) were investigated in a tidal basin of the southern North Sea, the Jade Bay, with respect to tidal cycles and a transect towards the North Sea in winter time (January and November, 2010). Physical parameters, major and trace elements, and nutrient concentrations were considered, too. Primary production and pelagic organic matter respiration were negligible during winter time. Both, the compositional variations on the transects as well as during the tidal cycles indicate the mixing of North Sea with fresh water. The combined spatial co-variations of different parameters indicate an introduction of fresh water that was enriched in DI12C, metabolites (e.g., ammonia), protons, and dissolved redox-sensitive elements (e.g., Mn2+). During the January campaign, the discharge via the flood gates was limited due to ice cover of the hinterland drainage ditches, allowing for an observation of tidal variations without significant mixing contributions from surface water discharges. Considering a binary mixing model with North Sea and fresh water as end-members, the extrapolated fresh water end-member composition for this campaign is estimated to contain about 3.8 mmol/kg DIC , and enhanced concentrations of NH4+, Mn2+, and protons compared to North Sea water. The fast temporal response of dissolved geochemical tracers on tidal variations in the Jade Bay indicates a continuous supply of a fresh water component. The measured composition of fresh waters entering the Jade Bay via flood gates (end of October, 2010) did not match the values estimated by the binary mixing model. Therefore, the overall fresh water component likely is a mixture between sources originating from flood gates and (in January) dominating submarine groundwater discharge entering the Jade Bay. This model is consistent with the results obtained during the November campaign, when a more important contribution from flood gates is expected and a more variable fresh water end-member is estimated. The co-variations of the concentrations and the stable carbon isotope composition of DIC are applied to evaluate possible superimposed sink-source-transformation processes in the coastal waters and a general co-variation scheme is suggested.