924 resultados para thoracic muscles
Resumo:
Background: In vitro investigations have demonstrated the importance of the ribcage in stabilising the thoracic spine. Surgical alterations of the ribcage may change load-sharing patterns in the thoracic spine. Computer models are used in this study to explore the effect of surgical disruption of the rib-vertebrae connections on ligament load-sharing in the thoracic spine. Methods: A finite element model of a T7-8 motion segment, including the T8 rib, was developed using CT-derived spinal anatomy for the Visible Woman. Both the intact motion segment and the motion segment with four successive stages of destabilization (discectomy and removal of right costovertebral joint, right costotransverse joint and left costovertebral joint) were analysed for a 2000Nmm moment in flexion/extension, lateral bending and axial rotation. Joint rotational moments were compared with existing in vitro data and a detailed investigation of the load sharing between the posterior ligaments carried out. Findings: The simulated motion segment demonstrated acceptable agreement with in vitro data at all stages of destabilization. Under lateral bending and axial rotation, the costovertebral joints were of critical importance in resisting applied moments. In comparison to the intact joint, anterior destabilization increases the total moment contributed by the posterior ligaments. Interpretation: Surgical removal of the costovertebral joints may lead to excessive rotational motion in a spinal joint, increasing the risk of overload and damage to the remaining ligaments. The findings of this study are particularly relevant for surgical procedures involving rib head resection, such as some techniques for scoliosis deformity correction.
Resumo:
Study Design. Analysis of a case series of 24 Lenke 1C adolescent idiopathic scoliosis (AIS) patients receiving selective thoracoscopic anterior scoliosis correction. Objective. To report the behaviour of the compensatory lumbar curve in a group of Lenke IC AIS patients following thoracoscopic anterior scoliosis correction, and to compare the results of this study with previously published data. Summary of Background Data. Several prior studies have reported spontaneous lumbar curve correction for both anterior and posterior selective fusion in Lenke 1C/King-Moe II patients; however to our knowledge no previous studies have reported outcomes of thoracoscopic anterior correction for this curve type. Methods. All AIS patients with a curve classification of Lenke 1C and a minimum of 24 months follow-up were retrieved from a consecutive series of 190 AIS patients who underwent thoracoscopic anterior instrumented fusion. Cobb angles of the major curve, instrumented levels, compensatory lumbar curve, and T5-T12 kyphosis were recorded, as well as coronal spinal balance, T1 tilt angle and shoulder balance. All radiographic parameters were measured before surgery and at 2, 6, 12 and 24 months after surgery. Results. Twenty-four female patients with right thoracic curves had a mean thoracic Cobb angle of 53.0° before surgery, decreasing to 24.9° two years after surgery. The mean lumbar compensatory Cobb angle was 43.5° before surgery, spontaneously correcting to 25.4° two years after surgery, indicating balance between the thoracic and lumbar scoliotic curves. The lumbar correction achieved (41.8%) compares favourably to previous studies. Conclusions. Selective thoracoscopic anterior fusion allows spontaneous lumbar curve correction and achieves coronal balance of main thoracic and compensatory lumbar curves, good cosmesis and patient satisfaction. Correction and balance are maintained 24 months after surgery.
Resumo:
Adolescent idiopathic scoliosis is a complex three dimensional deformity affecting 2-3% of the general population. The resulting spinal deformity consists of coronal curvature, hypokyphosis of the thoracic spine and vertebral rotation in the axial plane with posterior elements turned into the curve concavity. The potential for curve progression is heightened during the adolescent growth spurt. Success of scoliosis deformity correction depends on solid bony fusion between adjacent vertebrae after the intervertebral (IV) discs have been surgically cleared and the disc spaces filled with graft material. Recently a bioactive and resorbable scaffold fabricated from medical grade polycaprolactone has been developed for bone regeneration at load bearing sites. Combined with rhBMP-2, this has been shown to be successful in acting as a bone graft substitute in a porcine lumbar interbody fusion model when compared to autologous bone graft alone. The study aimed to establish a large animal thoracic spine interbody fusion model, develop spine biodegradable scaffolds (PCL) in combination with biologics (rhBMP-2) and to establish a platform for research into spine tissue engineering constructs. Preliminary results demonstrate higher grades of radiologically evident bony fusion across all levels when comparing fusion scores between the 3 and 6 month postop groups at the PCL CaP coated scaffold level, which is observed to be a similar grade to autograft, while no fusion is seen at the scaffold only level. Results to date suggest that the combination of rhBMP-2 and scaffold engineering actively promotes bone formation, laying the basis of a viable tissue engineered constructs.
Resumo:
Adolescent idiopathic scoliosis is a complex three dimensional deformity affecting 2-3% of the general population. Resulting spine deformities include progressive coronal curvature, hypokyphosis, or frank lordosis in the thoracic spine and vertebral rotation in the axial plane with posterior elements turned into the curve concavity. The potential for curve progression is heightened during the adolescent growth spurt. Success of scoliosis deformity correction depends on solid bony fusion between adjacent vertebrae after the intervertebral discs have been surgically cleared and the disc spaces filled with graft material. Problems with bone graft harvest site morbidity as well as limited bone availability have led to the search for bone graft substitutes. Recently, a bioactive and resorbable scaffold fabricated from medical grade polycaprolactone (PCL) has been developed for bone regeneration at load bearing sites. Combined with recombinant human bone morphogenic protein–2 (rhBMP-2), this has been shown to be successful in acting as a bone graft substitute in acting as a bone graft substitute in a porcine lumbar interbody fusion model when compared to autologous bone graft. This in vivo sheep study intends to evaluate the suitability of a custom designed medical grade PCL scaffold in combination with rhBMP-2 as a bone graft substitute in the setting of mini–thoracotomy surgery as a platform for ongoing research to benefit patients with adolescent idiopathic scoliosis.
Resumo:
Background A large animal model is required for assessment of minimally invasive, tissue engineering based approaches to thoracic spine fusion, with relevance to deformity correction surgery for human adolescent idiopathic scoliosis. Here we develop a novel open mini–thoracotomy approach in an ovine model of thoracic interbody fusion which allows assessment of various fusion constructs, with a focus on novel, tissue engineering based interventions. Methods The open mini-thoracotomy surgical approach was developed through a series of mock surgeries, and then applied in a live sheep study. Customized scaffolds were manufactured to conform with intervertebral disc space clearances required of the study. Twelve male Merino sheep aged 4 to 6 years and weighing 35 – 45 kg underwent the abovementioned procedure and were divided into two groups of six sheep at survival timelines of 6 and 12 months. Each sheep underwent a 3-level discectomy (T6/7, T8/9 and T10/11) with randomly allocated implantation of a different graft substitute at each of the three levels; (i) polycaprolactone (PCL) based scaffold plus 0.54μg rhBMP-2, (ii) PCL-based scaffold alone or (iii) autograft. The sheep were closely monitored post- operatively for signs of pain (i.e. gait abnormalities/ teeth gnawing/ social isolation). Fusion assessments were conducted post-sacrifice using Computed Tomography and hard-tissue histology. All scientific work was undertaken in accordance with the study protocol has been approved by the Institute's committee on animal research. Results. All twelve sheep were successfully operated on and reached the allotted survival timelines, thereby demonstrating the feasibility of the surgical procedure and post-operative care. There were no significant complications and during the post-operative period the animals did not exhibit marked signs of distress according to the described assessment criteria. Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL-based scaffold group in comparison to either PCL-based scaffold alone or autograft. These results were supported by histological evaluation of the respective groups. Conclusion. This novel open mini-thoracotomy surgical approach to the ovine thoracic spine represents a safe surgical method which can reproducibly form the platform for research into various spine tissue engineered constructs (TEC) and their fusion promoting properties.
Resumo:
Introduction. We develop a sheep thoracic spine interbody fusion model to study the suitability of polycaprolactone-based scaffold and recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within the thoracic spine. The surgical approach is a mini- open thoracotomy with relevance to minimally invasive deformity correction surgery for adolescent idiopathic scoliosis. To date there are no studies examining the use of this biodegradable implant in combination with biologics in a sheep thoracic spine model. Methods. In the present study, six sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone based scaffold plus 0.54µg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion was assessed at six months post-surgery. Results. Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL- based scaffold group in comparison to either PCL-based scaffold alone or autograft. These results were supported by histological evaluations of the respective groups. Biomechanical testing revealed significantly higher stiffness for the rhBMP-2 plus PCL- based scaffold group in all loading directions in comparison to the other two groups. Conclusions. The results of this study demonstrate that rhBMP-2 plus PCL-based scaffold is a viable bone graft substitute, providing an optimal environment for thoracic interbody spinal fusion in a large animal model.
Resumo:
Introduction. In vitro spine biomechanical testing has been central to many advances in understanding the physiology and pathology of the human spine. Owing to the difficulty in obtaining sufficient numbers of human samples to conduct these studies, animal spines have been accepted as a substitute model. However, it is difficult to compare results from different studies, as they use different preparation, testing and data collection methods. The aim of this study was to identify the effect of repeated cyclic loading on bovine spine segment stiffness. It also aimed to quantify the effect of multiple freeze-thaw sequences, as many tests would be difficult to complete in a single session [1-3]. Materials and Methods. Thoracic spines from 6-8 week old calves were used. Each spine was dissected and divided into motion segments including levels T4-T11 (n=28). These were divided into two equal groups. Each segment was potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37 degrees C and 100% humidity, using moment control to a maximum plus/minus 1.75 Nm with a loading rate of 0.3 Nm per second. Group (A) were tested with continuous repeated cyclic loading for 500 cycles with data recorded at cycles 3, 5, 10, 25, 100, 200, 300, 400 and 500. Group (B) were tested with 10 load cycles after each of 5 freeze thaw sequences. Data was collected from the tenth load cycle after each sequence. Statistical analysis of the data was performed using paired samples t-tests, ANOVA and generalized estimating equations. Results. The data were confirmed as having a normal distribution. 1. There were significant reductions in mean stiffness in flexion/extension (-20%; P=0.001) and lateral bending (-17%; P=0.009) over the 500 load cycles. However, there was no statistically significant change in axial rotation (P=0.152) 2. There was no statistically significant difference between mean stiffness over the five freeze-thaw sequences in flexion/extension (p=0.879) and axial rotation (p=0.07). However, there was a significant reduction in stiffness in lateral bending (-26%; p=0.007) Conclusion. Biomechanical testing of immature bovine spine motion segments requires careful interpretation. The effect of the number of load cycles as well as the number of freeze-thaw cycles on the stiffness of the motion segments depends on the axis of main movement.
Resumo:
This thesis represents a step forward in the development of a pre-clinical model investigating a suitable substitute for host bone for use in human spinal fusion. By way of an animal model, it examines the biological performance of a novel bone graft substitute comprised of a combination of a custom-designed biodegradable material and biologics.
Resumo:
Background: Phase III studies suggest that non-small-cell lung cancer (NSCLC) patients treated with cisplatin-docetaxel may have higher response rates and better survival compared with other platinum-based regimens. We report the final results of a randomised phase III study of docetaxel and carboplatin versus MIC or MVP in patients with advanced NSCLC. Patients and methods: Patients with biopsy proven stage III-IV NSCLC not suitable for curative surgery or radiotherapy were randomised to receive four cycles of either DCb (docetaxel 75 mg/m 2, carboplatin AUC 6), or MIC/MVP (mitomycin 6 mg/m 2, ifosfamide 3 g/m 2 and cisplatin 50 mg/m 2 or mitomycin 6 mg/ m 2, vinblastine 6 mg/m 2 and cisplatin 50 mg/m 2, respectively), 3 weekly. The primary end point was survival, secondary end points included response rates, toxicity and quality of life. Results: The median follow-up was 17.4 months. Overall response rate was 32% for both arms (partial response = 31%, complete response = 1%); 32% of MIC/MVP and 26% of DCb patients had stable disease. One-year survival was 39% and 35% for DCb and MIC/MVP, respectively. Two-year survival was 13% with both arms. Grade 3/4 neutropenia (74% versus 43%, P < 0.005), infection (18% versus 9%, P = 0.01) and mucositis (5% versus 1%, P = 0.02) were more common with DCb than MIC/MVP. The MIC/MVP arm had significant worsening in overall EORTC score and global health status whereas the DCb arm showed no significant change. Conclusions: The combination of DCb had similar efficacy to MIC/MVP but quality of life was better maintained. © 2006 European Society for Medical Oncology.
Resumo:
We aimed to evaluate the effect of the appointment of a dedicated specialist thoracic surgeon on surgical practice for lung cancer previously served by cardio-thoracic surgeons. Outcomes were compared for the 240 patients undergoing surgical resection for lung cancer in two distinct 3-year periods: Group A: 65 patients, 1994-1996 (pre-specialist); Group B: 175 patients, 1997-1999 (post-specialist). The changes implemented resulted in a significant increase in resection rate (from 12.2 to 23.4%, P<0.001), operations in the elderly (over 75 years) and extended resections. There were no significant differences in stage distribution, in-hospital mortality or stage-specific survival after surgery. Lung cancer surgery provided by specialists within a multidisciplinary team resulted in increased surgical resection rates without compromising outcome. Our results strengthen the case for disease-specific specialists in the treatment of lung cancer. © 2004 Published by Elsevier Ireland Ltd.
Resumo:
We investigated the effects of handling and fixation processes on the two-photon fluorescence spectroscopy of endogenous fluorophors in mouse skeletal muscle. The skeletal muscle was handled in one of two ways: either sectioned without storage or sectioned following storage in a freezer. The two-photon fluorescence spectra measured for different storage or fixation periods show a differential among those samples that were stored in water or were fixed either in formalin or methanol. The spectroscopic results indicate that formalin was the least disruptive fixative, having only a weak effect on the two-photon fluorescence spectroscopy of muscle tissue, whereas methanol had a significant influence on one of the autofluorescence peaks. The two handling processes yielded similar spectral information, indicating no different effects between them.
Resumo:
PURPOSE. We develop a sheep thoracic spine interbody fusion model to study the suitability of polycaprolactone-based scaffold and recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within the thoracic spine. The surgical approach is a mini- open thoracotomy with relevance to minimally invasive deformity correction surgery for adolescent idiopathic scoliosis. To date there are no studies examining the use of this biodegradable implant in combination with biologics in a sheep thoracic spine model. METHODS. In the present study, six sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone-based scaffold plus 0.54μg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion was assessed at six months post-surgery. RESULTS. Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL- based scaffold group in comparison to either PCL-based scaffold alone or autograft. These results were supported by histological evaluations of the respective groups. Biomechanical testing revealed significantly higher stiffness for the rhBMP-2 plus PCL- based scaffold group in all loading directions in comparison to the other two groups. CONCLUSION. The results of this study demonstrate that rhBMP-2 plus PCL- based scaffold is a viable bone graft substitute, providing an optimal environment for thoracic interbody spinal fusion in a large animal model.
Resumo:
Introduction Well-designed biodegradable scaffolds in combination with bone growth factors offer a valuable alternative to the current gold standard autograft in spinal fusion surgery Yong et al. (2013). Here we report on 6- vs 12- month data set evaluating the longitudinal performance of a CaP coated polycaprolactone (PCL) scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within a large preclinical animal model. Methods Twelve sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone based scaffold plus 0.54µg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion assessments were performed via high resolution clinical computed tomography and histological evaluation were undertaken at six (n=6) and twelve (n=6) months post-surgery using the Sucato grading system (Sucato et al. 2004). Results The computed tomography fusion grades of the 6- and 12- months in the rhBMP-2 plus PCL- based scaffold group were 1.9 and 2.1 respectively, in the autograft group 1.9 and 1.3 respectively, and in the scaffold alone group 0.9 and 1.17 respectively. There were no statistically significant differences in the fusion scores between 6- and 12- month for the rhBMP plus PCL- based scaffold or PCL – based scaffold alone group however there was a significant reduction in scores in the autograft group. These scores were seen to correlate with histological evaluations of the respective groups. Conclusions The results of this study demonstrate the efficacy of scaffold-based delivery of rhBMP-2 in promoting higher fusion grades at 6- and 12- months in comparison to the scaffold alone or autograft group within the same time frame. Fusion grades achieved at six months using PCL+rhBMP-2 are not significantly increased at twelve months post-surgery.
Resumo:
Introduction The importance of in vitro biomechanical testing in today’s understanding of spinal pathology and treatment modalities cannot be stressed enough. Different studies have used differing levels of dissection of their spinal segments for their testing protocols[1, 2]. The aim of this study was to assess the impact of removing the costovertebral joints and partial resection of the spinous process sequentially, on the stiffness of the immature thoracic bovine spinal segment. Materials and Methods Thoracic spines from 6-8 week old calves were used. Each spine was dissected and divided into motion segments with 5cm of attached rib on each side and full spinous processes including levels T4-T11 (n=28). They were potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second. They were first tested intact for ten load cycles with data collected from the tenth cycle. Progressive dissection was performed by removing first the attached ribs, followed by the spinous process at its base. Biomechanical testing was carried out after each level of dissection using the same protocol. Statistical analysis of the data was performed using repeated measures ANOVA. Results In combined flexion/extension there was a significant reduction in stiffness of 16% (p=0.002). This was mainly after resection of the ribs (14%, p=0.024) and mainly occurred in flexion where stiffness reduced by 22% (p=0.021). In extension, stiffness dropped by 13% (p=0.133). However there was no further significant change in stiffness on resection of the spinous process (<1%) (p=1.00). In lateral bending there was a significant decrease in stiffness of 13% (p<0.001). This comprised a drop of 11% on resection of the ribs (p=0.009) and a further 8% on resection of the spinous process (p=0.014). There was no difference between left and right bending. In axial rotation there was no significant change in stiffness after each stage of dissection (p=0.253). There was no difference between left and right rotation. Conclusion The costovertebral joints play a significant role in providing stability to the bovine thoracic spine in both flexion/extension and lateral bending, whereas the spinous processes play a minor role. Both elements have little effect on axial rotation stability.