991 resultados para thermophysical properties
Resumo:
This article presents empirical correlations to predict the density, specific heat, thermal conductivity and rheological power-law parameters of liquid egg yolk over a temperature range compatible with its industrial thermal processing (0-61 C). Moreover, a mathematical model for a pasteurizer that takes into account the spatial variation of the overall heat transfer coefficient throughout the plate heat exchanger is presented, as are two of its simplified forms. The obtained correlations of thermophysical properties are applied for the simulation of the egg yolk pasteurization, and the obtained temperature profiles are used for evaluating the extent of thermal inactivation. A detailed simulation example shows that there is a considerable deviation between the designed level of heat treatment and that this is predicted through process simulation. It is shown that a reliable mathematical model, combined with specialized thermophysical property correlations, provide a more accurate design of the pasteurization equipment that ensures effective inactivation, while preserving nutritional and sensorial characteristics.
Resumo:
Specific heat, thermal conductivity, thermal diffusivity, and density of coffee extract were experimentally determined in the range of 0.49 to 0.90 (wet basis) water content and at temperatures varying from 30 to 82 degreesC. Thermal conductivity and specific heat were measured by means of the same apparatus- a cell constituted of two concentric cylinders - operating at steady and unsteady state, respectively. The thermal diffusivity was measured by the well-known Dickerson's method and density was determined by picnometry. The results obtained were used to derive mathematical models for predicting these properties as a function of concentration and temperature.
Resumo:
Heat capacity, thermal conductivity, and density of whole milk, skimmed milk, and partially skimmed milk were determined at concentrations varying from (72.0 to 92.0) mass % water content and from (0.1 to 7.8) mass % fat content, at temperatures ranging from (275.15 to 344.15) K. Heat capacity and thermal conductivity varied from (3.4 to 4.1) J(.)g(-) K-1.(-1) and from (0.5 to 0.6) W(.)m(-1) K-1.(-1), respectively. Density varied from (1011.8 to 1049.5) kg(.)m(-3). Polynomial functions were used to model the dependence of the properties upon the studied variables. A linear relationship was obtained for all the properties. In the tested range, water content exhibited a greater influence on the properties, while fat content showed a smaller influence.
Resumo:
The specific heat, thermal conductivity, thermal diffusivity and density of Brazilian orange juice were determined between 0.34 and 0.73 (w/w) water content and with temperatures from 0.5 to 62°C. The experimental data were fitted as functions of temperature and water content and all properties showed a linear dependency with these variables. In the tested range, the water content exhibited a greater influence on the analyzed properties than temperature. © 1998 Elsevier Science Limited. All rights reserved.
Resumo:
Thermal conductivity, thermal diffusivity, and density of yellow mombin juice were determined at 8.8-49.4 °Brix and at temperature from 0.4 to 77.1 °C. Apparent viscosity was also measured between 7.8 and 30 °Brix and at temperature from 0 to 60 °C. Yellow mombin juice was produced from fruits of two different batches and the concentration process was performed using a roto evaporator or a rising film evaporator, single effect, with recirculation, under vacuum, to obtain concentrated juice. In order to obtain different concentrations, concentrated juice was diluted with distilled water. Multiple regression analysis was performed to fit thermal conductivity, thermal diffusivity and density experimental data obtaining a good fit. Arrhenius and power law relationships were proposed to fit apparent viscosity as a function of temperature and juice concentration at typical shear rates found during processing. The rheological parameters together with experimental values of pressure loss in tube flow were used to calculate friction factors, which were compared to those resulting from theoretical equation.
Thermophysical properties of cotton, canola, sunflower and soybean oils as a function of temperature
Resumo:
Vegetable oils are used in the industry of processed food, including deep-fat frying. This work determined data on the thermophysical properties of cotton, canola, sunflower, corn, and soybean oils. Thermal conductivity, heat capacity, density, and viscosity were measured within the temperature range of 299.15-433.15 K. The data showed that the temperature influenced the thermophysical properties of the oils studied. The developed correlations could be used to predict these properties within the range of temperatures studied. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
"Materials Central, Contract No. AF 33(616)-5212, Project No. 7381."
Resumo:
"Materials Laboratory, Contract No. AF 33(616)-5212, Project No. 7381."
Resumo:
During this work, a novel series of hydrophobic room temperature ionic liquids (ILs) based on five ether functionalized sulfonium cations bearing the bis(trifluoromethyl)sulfonylimide, [NTf2]- anion were synthesized and characterized. Their physicochemical properties, such as density, viscosity and ionic conductivity, electrochemical window along with thermal properties including phase transition behavior and decomposition temperature, have been measured. All of these ILs showed large liquid range temperature, low viscosity and good conductivity. Additionally, by combining DFT calculations along with electrochemical characterization it appears that these novel ILs show good electrochemical stability windows, suitable for the potential application as electrolyte materials in electrochemical energy storage devices.
Resumo:
In order to evaluate the impact of the alkyl side chain length and symmetry of the cation on the thermophysical properties of water-saturated ionic liquids (ILs), densities and viscosities as a function of temperature were measured at atmospheric pressure and in the (298.15 to 363.15) K temperature range, for systems containing two series of bis(trifluoromethylsulfonyl)imide-based compounds: the symmetric [C n C n im][NTf2] (with n = 1-8 and 10) and asymmetric [C n C1im][NTf2] (with n = 2-5, 7, 9 and 11) ILs. For water-saturated ILs, the density decreases with the increase of the alkyl side chain length while the viscosity increases with the size of the aliphatic tails. The saturation water solubility in each IL was further estimated with a reasonable agreement based on the densities of water-saturated ILs, further confirming that for the ILs investigated the volumetric mixing properties of ILs and water follow a near ideal behaviour. The water-saturated symmetric ILs generally present lower densities and viscosities than their asymmetric counterparts. From the experimental data, the isobaric thermal expansion coefficient and energy barrier were also estimated. A close correlation between the difference in the energy barrier values between the water-saturated and pure ILs and the water content in each IL was found, supporting that the decrease in the viscosity of ILs in presence of water is directly related with the decrease of the energy barrier.
Resumo:
The knowledge of thermophysical properties of liquid Co-Si alloys is a key requirement for manufacturing of composite materials by infiltration method. Despite this need, the experimental and predicted property data of the Co-Si system are scarce and often inconsistent between the various sources. In the present work the mixing behaviour of Co-Si melts has been analysed through the study of the concentration dependence of various thermodynamic, surface (surface tension and surface composition) and structural properties (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of the Compound Formation Model (CFM) and Quasi Chemical Approximation for regular solutions (QCA). In addition, the surface tension of the Co22·5Si77.5 (in at%) eutectic alloy, that is proposed to be used as the infiltrant, has been measured by the pendant drop method at temperatures ranging from 1593 to 1773 K. The results obtained were discussed with respect to both, temperature and concentration, and subsequently compared with the model predictions and literature data.
Resumo:
Transition metals (Ti, Zr, Hf, Mo, W, V, Nb, Ta, Pd, Pt, Cu, Ag, and Au) are essential building units of many materials and have important industrial applications. Therefore, it is important to understand their thermal and physical behavior when they are subjected to extreme conditions of pressure and temperature. This dissertation presents: • An improved experimental technique to use lasers for the measurement of thermal conductivity of materials under conditions of very high pressure (P, up to 50 GPa) and temperature (T up to 2500 K). • An experimental study of the phase relationship and physical properties of selected transition metals, which revealed new and unexpected physical effects of thermal conductivity in Zr, and Hf under high P-T. • New phase diagrams created for Hf, Ti and Zr from experimental data. • P-T dependence of the lattice parameters in α-hafnium. Contrary to prior reports, the α-ω phase transition in hafnium has a negative dT/dP slope. • New data on thermodynamic and physical properties of several transition metals and their respective high P-T phase diagrams. • First complete thermodynamic database for solid phases of 13 common transition metals was created. This database has: All the thermochemical data on these elements in their standard state (mostly available and compiled); All the equations of state (EoS) formulated from pressure-volume-temperature data (measured as a part of this study and from literature); Complete thermodynamic data for selected elements from standard to extreme conditions. The thermodynamic database provided by this study can be used with available thermodynamic software to calculate all thermophysical properties and phase diagrams at high P-T conditions. For readers who do not have access to this software, tabulated values of all thermodynamic and volume data for the 13 metals at high P-T are included in the APPENDIX. In the APPENDIX, a description of several other high-pressure studies of selected oxide systems is also included. Thermophysical properties (Cp, H, S, G) of the high P-T ω-phase of Ti, Zr and Hf were determined during the optimization of the EoS parameters and are presented in this study for the first time. These results should have important implications in understanding hexagonal-close-packed to simple-hexagonal phase transitions in transition metals and other materials.
Resumo:
Osmotic treatments are often applied prior to convective drying of foods to impart sensory appeal aspects. During this process a multicomponent mass flow, composed mainly of water and osmotic agent, takes place. In this work, a heat and mass transfer model for the osmo-convective drying of yacon was developed and solved by the Finite Element Method using COMSOL Multiphysics®, considering a 2-D axisymmetric geometry and moisture dependent thermophysical properties. Yacon slices were osmotically dehydrated for 2 hours in a solution of sucralose and then dried in a tray dryer for 3 hours. The model was validated by experimental data of temperature, moisture content and sucralose uptake (R²> 0.90).
Resumo:
We present results of computational simulations of tungsten-inert-gas and metal-inert-gas welding. The arc plasma and the electrodes (including the molten weld pool when necessary) are included self-consistently in the computational domain. It is shown, using three examples, that it would be impossible to accurately estimate the boundary conditions on the weld-pool surface without including the arc plasma in the computational domain. First, we show that the shielding gas composition strongly affects the properties of the arc that influence the weld pool: heat flux density, current density, shear stress and arc pressure at the weld-pool surface. Demixing is found to be important in some cases. Second, the vaporization of the weld-pool metal and the diffusion of the metal vapour into the arc plasma are found to decrease the heat flux density and current density to the weld pool. Finally, we show that the shape of the wire electrode in metal-inert-gas welding has a strong influence on flow velocities in the arc and the pressure and shear stress at the weld-pool surface. In each case, we present evidence that the geometry and depth of the weld pool depend strongly on the properties of the arc.