29 resultados para thermodilution
Resumo:
Pós-graduação em Anestesiologia - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
[EN] Peak aerobic power in humans (VO2,peak) is markedly affected by inspired O2 tension (FIO2). The question to be answered in this study is what factor plays a major role in the limitation of muscle peak VO2 in hypoxia: arterial O2 partial pressure (Pa,O2) or O2 content (Ca,O2)? Thus, cardiac output (dye dilution with Cardio-green), leg blood flow (thermodilution), intra-arterial blood pressure and femoral arterial-to-venous differences in blood gases were determined in nine lowlanders studied during incremental exercise using a large (two-legged cycle ergometer exercise: Bike) and a small (one-legged knee extension exercise: Knee)muscle mass in normoxia, acute hypoxia (AH) (FIO2 = 0.105) and after 9 weeks of residence at 5260 m (CH). Reducing the size of the active muscle mass blunted by 62% the effect of hypoxia on VO2,peak in AH and abolished completely the effect of hypoxia on VO2,peak after altitude acclimatization. Acclimatization improved Bike peak exercise Pa,O2 from 34 +/- 1 in AH to 45 +/- 1 mmHg in CH(P <0.05) and Knee Pa,O2 from 38 +/- 1 to 55 +/- 2 mmHg(P <0.05). Peak cardiac output and leg blood flow were reduced in hypoxia only during Bike. Acute hypoxia resulted in reduction of systemic O2 delivery (46 and 21%) and leg O2 delivery (47 and 26%) during Bike and Knee, respectively, almost matching the corresponding reduction in VO2,peak. Altitude acclimatization restored fully peak systemic and leg O(2) delivery in CH (2.69 +/- 0.27 and 1.28 +/- 0.11 l min(-1), respectively) to sea level values (2.65 +/- 0.15 and 1.16 +/- 0.11 l min(-1), respectively) during Knee, but not during Bike. During Knee in CH, leg oxygen delivery was similar to normoxia and, therefore, also VO2,peak in spite of a Pa,O2 of 55 mmHg. Reducing the size of the active mass improves pulmonary gas exchange during hypoxic exercise, attenuates the Bohr effect on oxygen uploading at the lungs and preserves sea level convective O2 transport to the active muscles. Thus, the altitude-acclimatized human has potentially a similar exercising capacity as at sea level when the exercise model allows for an adequate oxygen delivery (blood flow x Ca,O2), with only a minor role of Pa,O2 per se, when Pa,O2 is more than 55 mmHg.
Resumo:
Arterial pressure-based cardiac output monitors (APCOs) are increasingly used as alternatives to thermodilution. Validation of these evolving technologies in high-risk surgery is still ongoing. In liver transplantation, FloTrac-Vigileo (Edwards Lifesciences) has limited correlation with thermodilution, whereas LiDCO Plus (LiDCO Ltd.) has not been tested intraoperatively. Our goal was to directly compare the 2 proprietary APCO algorithms as alternatives to pulmonary artery catheter thermodilution in orthotopic liver transplantation (OLT). The cardiac index (CI) was measured simultaneously in 20 OLT patients at prospectively defined surgical landmarks with the LiDCO Plus monitor (CI(L)) and the FloTrac-Vigileo monitor (CI(V)). LiDCO Plus was calibrated according to the manufacturer's instructions. FloTrac-Vigileo did not require calibration. The reference CI was derived from pulmonary artery catheter intermittent thermodilution (CI(TD)). CI(V)-CI(TD) bias ranged from -1.38 (95% confidence interval = -2.02 to -0.75 L/minute/m(2), P = 0.02) to -2.51 L/minute/m(2) (95% confidence interval = -3.36 to -1.65 L/minute/m(2), P < 0.001), and CI(L)-CI(TD) bias ranged from -0.65 (95% confidence interval = -1.29 to -0.01 L/minute/m(2), P = 0.047) to -1.48 L/minute/m(2) (95% confidence interval = -2.37 to -0.60 L/minute/m(2), P < 0.01). For both APCOs, bias to CI(TD) was correlated with the systemic vascular resistance index, with a stronger dependence for FloTrac-Vigileo. The capability of the APCOs for tracking changes in CI(TD) was assessed with a 4-quadrant plot for directional changes and with receiver operating characteristic curves for specificity and sensitivity. The performance of both APCOs was poor in detecting increases and fair in detecting decreases in CI(TD). In conclusion, the calibrated and uncalibrated APCOs perform differently during OLT. Although the calibrated APCO is less influenced by changes in the systemic vascular resistance, neither device can be used interchangeably with thermodilution to monitor cardiac output during liver transplantation.
Resumo:
Insufficient cardiac preload and impaired contractility are frequent in early sepsis. We explored the effects of acute cardiac preload reduction and dobutamine on hepatic arterial (Qha) and portal venous (Qpv) blood flows during endotoxin infusion. We hypothesized that the hepatic arterial buffer response (HABR) is absent during preload reduction and reduced by dobutamine. In anesthetized pigs, endotoxin or vehicle (n = 12, each) was randomly infused for 18 h. HABR was tested sequentially by constricting superior mesenteric artery (SMA) or inferior vena cava (IVC). Afterward, dobutamine at 2.5, 5.0, and 10.0 μg/kg per minute or another vehicle (n = 6, each) was randomly administered in endotoxemic and control animals, and SMA was constricted during each dose. Systemic (cardiac output, thermodilution) and carotid, splanchnic, and renal blood flows (ultrasound Doppler) and blood pressures were measured before and during administration of each dobutamine dose. HABR was expressed as hepatic arterial pressure/flow ratio. Compared with controls, 18 h of endotoxin infusion was associated with decreased mean arterial blood pressure [49 ± 11 mmHg vs. 58 ± 8 mmHg (mean ± SD); P = 0.034], decreased renal blood flow, metabolic acidosis, and impaired HABR during SMA constriction [0.32 (0.18-1.32) mmHg/ml vs. 0.22 (0.08-0.60) mmHg/ml; P = 0.043]. IVC constriction resulted in decreased Qpv in both groups; whereas Qha remained unchanged in controls, it decreased after 18 h of endotoxemia (P = 0.031; constriction-time-group interaction). One control and four endotoxemic animals died during the subsequent 6 h. The maximal increase of cardiac output during dobutamine infusion was 47% (22-134%) in controls vs. 53% (37-85%) in endotoxemic animals. The maximal Qpv increase was significant only in controls [24% (12-47%) of baseline (P = 0.043) vs. 17% (-7-32%) in endotoxemia (P = 0.109)]. Dobutamine influenced neither Qha nor HABR. Our data suggest that acute cardiac preload reduction is associated with preferential hepatic arterial perfusion initially but not after established endotoxemia. Dobutamine had no effect on the HABR.
Resumo:
INTRODUCTION: Sepsis may impair mitochondrial utilization of oxygen. Since hepatic dysfunction is a hallmark of sepsis, we hypothesized that the liver is more susceptible to mitochondrial dysfunction than the peripheral tissues, such as the skeletal muscle. We studied the effect of prolonged endotoxin infusion on liver, muscle and kidney mitochondrial respiration and on hepatosplanchnic oxygen transport and microcirculation in pigs. METHODS: 20 anesthetized pigs were randomized to receive endotoxin or saline infusion for 24 hours. Muscle, liver and kidney mitochondrial respiration was assessed. Cardiac output (thermodilution), carotid, superior mesenteric and kidney arterial, portal venous (ultrasound Doppler) and microcirculatory blood flow (laser Doppler) were measured, and systemic and regional oxygen transport and lactate exchange were calculated. RESULTS: Endotoxin infusion induced hyperdynamic shock and impaired the glutamate- and succinate-dependent mitochondrial respiratory control ratio (RCR) in the liver (glutamate: endotoxemia: median [range] 2.8 [2.3-3.8] vs. controls: 5.3 [3.8-7.0]; p<0.001; succinate: endotoxemia: 2.9 [1.9-4.3] vs. controls: 3.9 [2.6-6.3] p=0.003). While the ADP:O ratio was reduced with both substrates, maximal ATP production was impaired only in the succinate-dependent respiration. Hepatic oxygen consumption and extraction, and liver surface laser Doppler blood flow remained unchanged. Glutamate-dependent respiration in the muscle and kidney was unaffected. CONCLUSIONS: Endotoxemia reduces the efficiency of hepatic but neither skeletal muscle nor kidney mitochondrial respiration, independent of regional and microcirculatory blood flow changes.
Resumo:
BACKGROUND AND OBJECTIVE: Insufficient blood flow and oxygenation in the intestinal tract is associated with increased incidence of postoperative complications after bowel surgery. High fluid volume administration may prevent occult regional hypoperfusion and intestinal tissue hypoxia. We tested the hypothesis that high intraoperative fluid volume administration increases intestinal wall tissue oxygen pressure during laparotomy. METHODS: In all, 27 pigs were anaesthetized, ventilated and randomly assigned to one of the three treatment groups (n = 9 in each) receiving low (3 mL kg-1 h-1), medium (7 mL kg-1 h-1) or high (20 mL kg-1 h-1) fluid volume treatment with lactated Ringer's solution. All animals received 30% and 100% inspired oxygen in random order. Cardiac index was measured with thermodilution and tissue oxygen pressure with a micro-oximetry system in the jejunum and colon wall and subcutaneous tissue. RESULTS: Groups receiving low and medium fluid volume treatment had similar systemic haemodynamics. The high fluid volume group had significantly higher mean arterial pressure, cardiac index and subcutaneous tissue oxygenation. Tissue oxygen pressures in the jejunum and colon were comparable in all three groups. CONCLUSIONS: The three different fluid volume regimens tested did not affect tissue oxygen pressure in the jejunum and colon, suggesting efficient autoregulation of intestinal blood flow in healthy subjects undergoing uncomplicated abdominal surgery.
Resumo:
BACKGROUND: The postoperative assessment of volume status is not straightforward because of concomitant changes in intravascular volume and vascular tone. Hypovolemia and blood flow redistribution may compromise the perfusion of the intraabdominal organs. We investigated the effects of a volume challenge in different intra- and extraabdominal vascular beds. METHODS: Twelve pigs were studied 6 h after major intraabdominal surgery under general anesthesia when clinically normovolemic. Volume challenges consisted of 200 mL rapidly infused 6% hydroxyethyl starch. Systemic (continuous thermodilution) and regional (ultrasound Doppler) flows in carotid, renal, celiac trunk, hepatic, and superior mesenteric arteries and the portal vein were continuously measured. The acute and sustained effects of the challenge were compared with baseline. RESULTS: Volume challenge produced a sustained increase of 22% +/- 15% in cardiac output (P < 0.001). Blood flow increased by 10% +/- 9% in the renal artery, by 22% +/- 15% in the carotid artery, by 26% +/- 15% in the superior mesenteric artery, and by 31% +/- 20% in the portal vein (all P < 0.001). Blood flow increases in the celiac trunk (8% +/- 13%) and the hepatic artery (7% +/- 19%) were not significant. Increases in regional blood flow occurred early and were sustained. Mean arterial and central venous blood pressures increased early and decreased later (all P < 0.05). CONCLUSIONS: A volume challenge in clinically euvolemic postoperative animals was associated with a sustained increase in blood flow to all vascular beds, although the increase in the celiac trunk and the hepatic artery was very modest and did not reach statistical significance. Whether improved postoperative organ perfusion is accompanied by a lower complication rate should be evaluated in further studies.
Resumo:
ABSTRACT: INTRODUCTION: Low blood pressure, inadequate tissue oxygen delivery and mitochondrial dysfunction have all been implicated in the development of sepsis-induced organ failure. This study evaluated the effect on liver mitochondrial function of using norepinephrine to increase blood pressure in experimental sepsis. METHODS: Thirteen anaesthetized pigs received endotoxin (Escherichia coli lipopolysaccharide B0111:B4; 0.4 mug/kg per hour) and were subsequently randomly assigned to norepinephrine treatment or placebo for 10 hours. Norepinephrine dose was adjusted at 2-hour intervals to achieve 15 mmHg increases in mean arterial blood pressure up to 95 mmHg. Systemic (thermodilution) and hepatosplanchnic (ultrasound Doppler) blood flow were measured at each step. At the end of the experiment, hepatic mitochondrial oxygen consumption (high-resolution respirometry) and citrate synthase activity (spectrophotometry) were assessed. RESULTS: Mean arterial pressure (mmHg) increased only in norepinephrine-treated animals (from 73 [median; range 69 to 81] to 63 [60 to 68] in controls [P = 0.09] and from 83 [69 to 93] to 96 [86 to 108] in norepinephrine-treated animals [P = 0.019]). Cardiac index and systemic oxygen delivery (DO2) increased in both groups, but significantly more in the norepinephrine group (P < 0.03 for both). Cardiac index (ml/min per.kg) increased from 99 (range: 72 to 112) to 117 (110 to 232) in controls (P = 0.002), and from 107 (84 to 132) to 161 (147 to 340) in norepinephrine-treated animals (P = 0.001). DO2 (ml/min per.kg) increased from 13 (range: 11 to 15) to 16 (15 to 24) in controls (P = 0.028), and from 16 (12 to 19) to 29 (25 to 52) in norepinephrine-treated animals (P = 0.018). Systemic oxygen consumption (systemic VO2) increased in both groups (P < 0.05), whereas hepatosplanchnic flows, DO2 and VO2 remained stable. The hepatic lactate extraction ratio decreased in both groups (P = 0.05). Liver mitochondria complex I-dependent and II-dependent respiratory control ratios were increased in the norepinephrine group (complex I: 3.5 [range: 2.1 to 5.7] in controls versus 5.8 [4.8 to 6.4] in norepinephrine-treated animals [P = 0.015]; complex II: 3.1 [2.3 to 3.8] in controls versus 3.7 [3.3 to 4.6] in norepinephrine-treated animals [P = 0.09]). No differences were observed in citrate synthase activity. CONCLUSION: Norepinephrine treatment during endotoxaemia does not increase hepatosplanchnic flow, oxygen delivery or consumption, and does not improve the hepatic lactate extraction ratio. However, norepinephrine increases the liver mitochondria complex I-dependent and II-dependent respiratory control ratios. This effect was probably mediated by a direct effect of norepinephrine on liver cells.
Resumo:
BACKGROUND The assessment of hemodynamic status is a crucial task in the initial evaluation of trauma patients. However, blood pressure and heart rate are often misleading, as multiple variables may impact these conventional parameters. More reliable methods such as pulmonary artery thermodilution for cardiac output measuring would be necessary, but its applicability in the Emergency Department is questionable due to their invasive nature. Non-invasive cardiac output monitoring devices may be a feasible alternative. METHODS A systematic literature review was conducted. Only studies that explicitly investigated non-invasive hemodynamic monitoring devices in trauma patients were considered. RESULTS A total of 7 studies were identified as suitable and were included into this review. These studies evaluated in a total of 1,197 trauma patients the accuracy of non-invasive hemodynamic monitoring devices by comparing measurements to pulmonary artery thermodilution, which is the gold standard for cardiac output measuring. The correlation coefficients r between the two methods ranged from 0.79 to 0.92. Bias and precision analysis ranged from -0.02 +/- 0.78 l/min/m(2) to -0.14 +/- 0.73 l/min/m(2). Additionally, data on practicality, limitations and clinical impact of the devices were collected. CONCLUSION The accuracy of non-invasive cardiac output monitoring devices in trauma patients is broadly satisfactory. As the devices can be applied very early in the shock room or even preclinically, hemodynamic shock may be recognized much earlier and therapeutic interventions could be applied more rapidly and more adequately. The devices can be used in the daily routine of a busy ED, as they are non-invasive and easy to master.
Resumo:
We have used an animal model to test the reliability of a new portable continuous-wave Doppler ultrasonic cardiac output monitor, the USCOM. In six anesthetized dogs, cardiac output was measured with a high-precision transit time ultrasonic flowprobe placed on the ascending aorta. The dogs' cardiac output was increased with a dopamine infusion (0-15 mug (.) kg(-1) (.) min(-1)). Simultaneous flowprobe and USCOM cardiac output measurements were made. Up to 64 pairs of readings were collected from each dog. Data were compared by using the Bland and Altman plot method and Lin's concordance correlation coefficient. A total of 319 sets of paired readings were collected. The mean (+/-SD) cardiac output was 2.62 +/- 1.04 L/min, and readings ranged from 0.79 to 5.73 L/min. The mean bias between the 2 sets of readings was -0.01 L/min, with limits of agreement (95% confidence intervals) of -0.34 to 0.31 L/min. This represents a 13% error. In five of six dogs, there was a high degree of concordance, or agreement, between the 2 methods, with coefficients >0.9. The USCOM provided reliable measurements of cardiac output over a wide range of values. Clinical trials are needed to validate the device in humans.
Resumo:
Two in-fiber Bragg grating (FBG) temperature sensor systems for medical applications are demonstrated: (1) an FBG flow-directed thermodilution catheter based on interferometric detection of wavelength shift that is used for cardiac monitoring; and (2) an FBG sensor system with a tunable Fabry-Perot filter for in vivo temperature profiling in nuclear magnetic resonance (NMR) machines. Preliminary results show that the FBG sensor is in good agreement with electrical sensors that are widely used in practice. A field test shows that the FBG sensor system is suitable for in situ temperature profiling in NMR machines for medical applications.
Resumo:
Two in-fiber Bragg grating (FBG) temperature sensor systems for medical applications are demonstrated: (1) an FBG flow-directed thermodilution catheter based on interferometric detection of wavelength shift that is used for cardiac monitoring; and (2) an FBG sensor system with a tunable Fabry-Perot filter for in vivo temperature profiling in nuclear magnetic resonance (NMR) machines. Preliminary results show that the FBG sensor is in good agreement with electrical sensors that are widely used in practice. A field test shows that the FBG sensor system is suitable for in situ temperature profiling in NMR machines for medical applications.
Resumo:
Introducción: El monitoreo hemodinámico es una herramienta para diagnosticar el choque cardiogénico y monitorear la respuesta al tratamiento; puede ser invasivo, mínimamente invasivo o no invasivo. Se realiza rutinariamente con catéter de arteria pulmonar (CAP) o catéter de Swan Ganz; nuevas técnicas de monitoreo hemodinámico mínimamente invasivo tienen menor tasa de complicaciones. Actualmente se desconoce cuál técnica de monitoreo cuenta con mayor seguridad en el paciente con choque cardiogénico. Objetivo: Evaluar la seguridad del monitoreo hemodinámico invasivo comparado con el mínimamente invasivo en pacientes con choque cardiogénico en cuidado intensivo adultos. Diseño: Revisión sistemática de la literatura. Búsqueda en Pubmed, EMBASE, OVID - Cochrane Library, Lilacs, Scielo, registros de ensayos clínicos, actas de conferencias, repositorios, búsqueda de literatura gris en Google Scholar, Teseo y Open Grey hasta agosto de 2016, publicados en inglés y español. Resultados: Se identificó un único estudio con 331 pacientes críticamente enfermos que comparó el monitoreo hemodinámico con CAP versus PiCCO que concluyó que después de la corrección de los factores de confusión, la elección del tipo de monitoreo no influyó en los resultados clínicos más importantes en términos de complicaciones y mortalidad. Dado que se incluyeron otros diagnósticos, no es posible extrapolar los resultados sólo a choque cardiogénico. Conclusión: En la literatura disponible no hay evidencia de que el monitoreo hemodinámico invasivo comparado con el mínimamente invasivo, en pacientes adultos críticamente enfermos con choque cardiogénico, tenga diferencias en cuanto a complicaciones y mortalidad.