919 resultados para textile dyes


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the treatment of synthetic wastewaters containing Remazol Red BR (RRB) and Novacron Blue C-D (NB) by anodic oxidation using boron doped diamond anodes (BDD) and Novacron Yellow (YN) using BDD and Platinum (Pt) anodes was investigated. Galvanostatic electrolyses of RRB and NB synthetic wastewaters have led to the complete decolorization removal at different operating conditions (current density, pH and temperature). The influence of these parameters was investigated in order to find the best conditions for dyestuff colour removal. According to the experimental results obtained, the electrochemical oxidation process is suitable for decolorizing wastewaters containing these textile dyes, due to the electrocatalytic properties of BDD and Pt anode. Energy requirements for removing colour during galvanostatic electrolyses of RRB, NB and YN synthetic solutions depends mainly on the operating conditions; for example for RRB, it passes from 3.30 kWh m-3 at 20 mA cm-2 to 4.28 kWh m-3 at 60 mA cm-2 (pH = 1); 15.23 kWh m-3 at 20 mA cm-2 to 24.75 kWh m-3 at 60 mA cm-2 (pH = 4.5); 10.80 kWh m-3 at 20 mA cm-2 to 31.5 kWh m-3 at 60 mA cm-2 (pH = 8) (data estimated per volume of treated effluent). In order to verify the Brazilian law regulations of NB and RRB synthetic solutions after electrochemical decolourisation treatment, Hazen Units values were determined and the total colour removal was achieved; remaining into the regulations. Finally, electrical energy cost for removing colour was estimated

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, electrochemical technology was used to treat synthetic wastewater containing Methyl Red (MR) and Blue Novacron (BN) by anodic oxidation using anodes platinum (Pt) and real samples of textile effluents using DDB anodes and platinum (Pt). The removal of color from the galvanostatic electrolysis of synthetic wastewater MR and BN, and the actual sample has been observed under different conditions (different current densities and temperature variation). The investigation of these parameters was performed in order to establish the best conditions for removal of color and chemical oxygen demand (BOD). According to the results obtained in this study, the electrochemical oxidation processes suitable for the degradation process of color and COD in wastewater containing such textile dyes, because the electrocatalytic properties of Pt and BDD anodes consumption energy during the electrochemical oxidation of synthetic solutions AN and MR and real sample, mainly depend on the operating parameters of operation, for example, the synthetic sample of MR, energy consumption rose from 42,00kWhm-3 in 40 mAcm-2 and 25 C to 17,50 kWhm-3 in 40mAcm-2 and 40 C, from the BN went 17,83 kWhm-3 in 40mAcm and 40°C to 14,04 kWhm- 3 in 40mAcm-2 and 40 C (data estimated by the volume of treated effluent). These results clearly indicate the applicability of electrochemical treatment for removing dyes from synthetic solutions and real industrial effluents

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Textile dyes are discarded into the aquatic ecosystem via industrial effluents and potentially expose humans and local biota to adverse effects. The commercial dye CI Disperse Blue 291 which contains the aminoazobenzene 2-[(2-bromo-4,6-dinitrophenyl)azo]-5(diethylamino)-4-methoxyacetanilide (CAS registry no. 56548-64-2), was tested for genotoxicity and cytotoxicity in the human hepatoma cell line HepG2, using the comet assay, micronucleus (MN) test and a cell viability test. Five different concentrations of the test compound were examined: 200 mu g/ml, 400 mu g/ml, 600 mu g/ml, 800 mu g/ml and 1000 mu g/ml. An increase in comet tail length and in the frequency of MN was detected with exposure of cells to concentrations of the commercial dye from 400 pg/ml. Furthermore, the dye was found to decrease cell viability. The results of this study demonstrate for the first time the genotoxic and mutagenic effects of the dye CI Disperse Blue 291 in mammalian cells, thus stressing the need to develop non-mutagenic dyes and to invest in improving the treatment of effluents. These measures will help to prevent harmful effects that these compounds can have on humans and aquatic organisms that come in contact with them. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the development of the textile industry, there has been a demand for dye removal from contaminated effluents. In recent years, attention has been directed toward various natural solid materials that are capable of removing pollutants from contaminated water at low cost. One such material is sugarcane bagasse. The aim of the present study was to evaluate adsorption of the dye Acid Violet Alizarin N with different concentrations of sugarcane bagasse and granulometry in agitated systems at different pH. The most promising data (achieved with pH 2.5) was analyzed with both Freundlich and Langmuir isotherms equations. The model that better fits dye adsorption interaction into sugarcane bagasse is Freundlich equation, and thus the multilayer model. Moreover, a smaller bagasse granulometry led to greater dye adsorption. The best treatment was achieved with a granulometry value lower than 0.21 mm at pH 2.50, in which the total removal was estimated at a concentration of 16.25 mg mL(-1). Hence, sugarcane bagasse proves to be very attractive for dye removal from textile effluents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The textile industry consumes large quantities of water and chemicals, especially in dyeing and finishing processes. Textile dye adsorption can be accomplished with natural or synthetic compounds. Cell immobilization using biomaterials allows the reduction of toxicity and mechanical resistance and opens spaces within the matrix for cell growth. The use of natural materials, such as sugarcane bagasse, is promising due to the low costs involved. The aim of the present study was to evaluate the use of sugarcane bagasse treated with either polyethyleneimine (PEI), NaOH or distilled water in the cell immobilization of Saccharomyces cerevisiae for textile dye removal. Three different adsorption tests were conducted: treated sugarcane bagasse alone, free yeast cells and bagasse-immobilized yeast cells. Yeast immobilization was 31.34% with PEI-treated bagasse, 8.56% with distilled water and 22.54% with NaOH. PEI-treated bagasse exhibited the best removal rates of the dye at all pH values studied (2.50, 4.50 and 6.50). The best Acid Black 48 adsorption rates were obtained with use of free yeast cells. At pH 2.50, 1 mg of free yeast cells was able to remove 5488.49 g of the dye. The lowest adsorption capacity rates were obtained using treated bagasse alone. However, the use of bagasse-immobilized cells increased adsorption efficiency from 20 to 40%. The use of immobilized cells in textile dye removal is very attractive due to adsorbed dye precipitation, which eliminates the industrial need for centrifugation processes. Dye adsorption using only yeast cells or sugarcane bagasse requires separation methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemical reagents used by the textile industry are very diverse in their composition, ranging from inorganic compounds to polymeric compounds. Strong color is the most notable characteristic of textile effluents, and a large number of processes have been employed for color removal. In recent years, attention has been directed toward various natural solid materials that are able to remove pollutants from contaminated water at low cost, such as sugarcane bagasse. Cell immobilization has emerged as an alternative that offers many advantages in the biodegradation process, including the reuse of immobilized cells and high mechanical strength, which enables metabolic processes to occur under adverse conditions of pH, sterility, and agitation. Support treatment also increases the number of charges on the surface, thereby facilitating cell immobilization processes through adsorption and ionic bonds. Polyethyleneimine (PEI) is a polycationic compound known to have a positive effect on enzyme activity and stability. The aim of the present study was to investigate a low-cost alternative for the biodegradation and bioremediation of textile dyes, analyzing Saccharomyces cerevisiae immobilization in activated bagasse for the promotion of Acid Black 48 dye biodegradation in an aqueous solution. A 1 % concentration of a S. cerevisiae suspension was evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated for 240 h using UV-vis spectrophotometry. The analysis revealed significant relative absorbance values, indicating the occurrence of biodegradation in both treatments. Therefore, S. cerevisiae immobilized in sugarcane bagasse is very attractive for use in biodegradation processes for the treatment of textile effluents. © 2012 Springer Science+Business Media Dordrecht.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Textile industries use large amounts of water in dyeing processes and a wide variety of synthetic dyes. A small concentration of these dyes in the environment can generate highly visible pollution and changes in aquatic ecosystems. Adsorption, biosorption, and biodegradation are the most advantageous dye removal processes. Biodegradation occurs when enzymes produced by certain microorganisms are capable of breaking down the dye molecule. To increase the efficiency of these processes, cell immobilization enables the reuse of the immobilized cells and offers a high degree of mechanical strength, allowing metabolic processes to take place under adverse conditions. The aim of the present study was to investigate the use of Saccharomyces cerevisiae immobilized in activated sugarcane bagasse for the degradation of Acid Black 48 dye in aqueous solutions. For such, sugarcane bagasse was treated with polyethyleneimine (PEI). Concentrations of a 1 % S. cerevisiae suspension were evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays for 240 h with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated by Fourier transform infrared spectrophotometry. The results indicated a probable change in the dye molecule and the possible formation of new metabolites. Thus, S. cerevisiae immobilized in sugarcane bagasse is very attractive for biodegradation processes in the treatment of textile effluents. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a study of the applicability of adsorption isotherms, known as Langmuir and Freundlich isotherm, between the biosorptive interaction of yeast lyophilized Saccharomyces cerevisiae and textile dyes. To that end, we prepared stock solutions of the textile dyes Direct Red 23 and Direct Red 75 in the concentration of 1.000μg/mL and a yeast suspension at 2,5%. We did experiments for two cases, firstly for the case that we have a fix concentration of yeast at 0,500mg/mL and an variable concentration of dye range from40, 50, 60, 80 and 100μg/mL, then for the case that we fixed the concentration of dye at 100μg/mL and the yeast concentration was variable range from 0,250, 0,500, 0,750, 1,000, 1,250mg/mL. For the dye Direct Red 23 we did analysis in the pH 2,5, 4,5 and 6,5; for the Direct Red 75, we just did for the pH 2,5. We leave the dye solution in contact with the yeast for 2 hours at a constant temperature of 30°C and then centrifuged and analyzed the sample in a spectrophotometer and finally made and analysis of parameters for the removal and study of the isotherms. After the biosorption, was observed that for the Direct Red 23 in the pH 2,5 was needed 1,407mg/mL of yeast for total removal, while for the pH 4,5 was needed 8,806mg/mL and in pH 6,5 was 9,286mg/mL; for the Direct Red 75 in pH 2,5 was needed 1,337mg/mL. This difference can be explain by the adsorption isotherms, was observed that in the case when the yeast was fix when we had in a acid pH the behavior of the system was compatible with the Langmuir isotherm, and thus, an monolayer pattern. And that when we decrease the acidity of the medium the system became more compatible with a Freundlich isotherm, and thus, a multilayer pattern; for the case that the yeast was variable this is not much evident, however for the pH 2,5 she became compatible with a Langmuir isotherm... (Complete abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the present work was to investigate the potential of cyanobacteria isolated from different environments in decolorizing eleven different types of textile dyes. For inoculum preparation 50 ml of BG-11 medium were used for the cyanobacteria Leptolyngbia CENA103, Leptolyngbia CENA104 and Phormidium autumnale UTEX1580 and 50 ml of SWBG-11 medium for Phormidium sp., Leptolyngbya sp. and Synecochoccus sp. Test tubes containing 10 ml of liquid medium and 0.02% of each dye (remazol, indigo blue, indanthrene blue RCL, drimaren blue CL-R, dispersol blue C-2R, drimaren red CL-5B, dispersol red C- 4G, indanthrene red FBB, drimaren yellow CL-R, palanil yellow 3G and indanthrene yellow 5GF) were inoculated with cyanobacteria. A spectrophotometer was used to verify the maximum absorbance of each dye and the percentage of decolorization and also thin layer chromatography (TLC). The results showed that all the tested cyanobacteria were capable to remove more than 50% of some dyes. The present study confirmed the capacity of cyanobacteria in decolorize and possibly degrade structurally different textile dyes, suggesting the possibility of their application in bioremediation studies. The data are promising, and will lead to further studies of dye degradation and its toxicicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)