393 resultados para tert butylhydroquinone
Resumo:
The rancidity of vegetable oils is considered one problem in the food industry,thus, are added antioxidants in food. The objective of this study was to investigatethe antioxidant effect of oregano and thyme extracts in soybean oil underthermoxidation. Soybean oil containing 3,000 mg/kg of oregano and thyme oleo-resins and the mixture of both, as well as soybean oil containing tert-butylhydroquinone (TBHQ; 50 mg/kg) and soybean oil free of were subjected tothermoxidation. Then, the physicochemical properties and fatty acid profile wereevaluated. Oregano and thyme oleoresins applied separately presented a higherprotective effect, inhibiting a greater formation of polar compounds than the anti-oxidant TBHQ, indicating that the addition of 3,000 mg/kg has ensured a betteroxidative protection than the synthetic antioxidant. The increase in the concentra-tion of oleoresins by mixing thyme and oregano extracts has given a higher pro-tective effect.
Resumo:
The divalent cation Sr2+ induced repetitive transient spikes of the cytosolic Ca2+ activity [Ca2+]cy and parallel repetitive transient hyperpolarizations of the plasma membrane in the unicellular green alga Eremosphaera viridis. [Ca2+]cy measurements, membrane potential measurements, and cation analysis of the cells were used to elucidate the mechanism of Sr2+-induced [Ca2+]cy oscillations. Sr2+ was effectively and rapidly compartmentalized within the cell, probably into the vacuole. The [Ca2+]cy oscillations cause membrane potential oscillations, and not the reverse. The endoplasmic reticulum (ER) Ca2+-ATPase blockers 2,5-di-tert-butylhydroquinone and cyclopiazonic acid inhibited Sr2+-induced repetitive [Ca2+]cy spikes, whereas the compartmentalization of Sr2+ was not influenced. A repetitive Ca2+ release and Ca2+ re-uptake by the ER probably generated repetitive [Ca2+]cy spikes in E. viridis in the presence of Sr2+. The inhibitory effect of ruthenium red and ryanodine indicated that the Sr2+-induced Ca2+ release from the ER was mediated by a ryanodine/cyclic ADP-ribose type of Ca2+ channel. The blockage of Sr2+-induced repetitive [Ca2+]cy spikes by La3+ or Gd3+ indicated the necessity of a certain influx of divalent cations for sustained [Ca2+]cy oscillations. Based on these data we present a mathematical model that describes the baseline spiking [Ca2+]cy oscillations in E. viridis.
Resumo:
Detoxication (phase 2) enzymes, such as glutathione S-transferases (GSTs), NAD(P)H:(quinone-acceptor) oxidoreductase (QR), and UDP-glucuronsyltransferase, are induced in animal cells exposed to a variety of electrophilic compounds and phenolic antioxidants. Induction protects against the toxic and neoplastic effects of carcinogens and is mediated by activation of upstream electrophile-responsive/antioxidant-responsive elements (EpRE/ARE). The mechanism of activation of these enhancers was analyzed by transient gene expression of growth hormone reporter constructs containing a 41-bp region derived from the mouse GST Ya gene 5'-upstream region that contains the EpRE/ARE element and of constructs in which this element was replaced with either one or two consensus phorbol 12-tetradecanoate 13-acetate (TPA)-responsive elements (TREs). When these three constructs were compared in Hep G2 (human) and Hepa 1c1c7 (murine) hepatoma cells, the wild-type sequence was highly activated by diverse inducers, including tert-butylhydroquinone, Michael reaction acceptors, 1,2-dithiole-3-thione, sulforaphane,2,3-dimercapto-1-propanol, HgCl2, sodium arsenite, and phenylarsine oxide. In contrast, constructs with consensus TRE sites were not induced significantly. TPA in combination with these compounds led to additive or synergistic inductions of the EpRE/ARE construct, but induction of the TRE construct was similar to that induced by TPA alone. Transfection of the EpRE/ARE reporter construct into F9 cells, which lack endogenous TRE-binding proteins, produced large inductions by the same compounds, which also induced QR activity in these cells. We conclude that activation of the EpRE/ARE by electrophile and antioxidant inducers is mediated by EpRE/ARE-specific proteins.
Resumo:
Induction of phase 2 detoxification enzymes by phenolic antioxidants can account for prevention of tumor initiation but cannot explain why these compounds inhibit tumor promotion. Phase 2 genes are induced through an antioxidant response element (ARE). Although the ARE resembles an AP-1 binding site, we show that the major ARE binding and activating protein is not AP-1. Interestingly, AP-1 DNA binding activity was induced by the phenolic antioxidant tert-butylhydroquinone (BHQ), but the induction of AP-1 transcriptional activity by the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) was inhibited by this compound. BHQ induced expression of c-jun, junB, fra-1, and fra-2, which encode AP-1 components, but was a poor inducer of c-fos and had no effect on fosB. Like c-Fos and FosB, the Fra proteins heterodimerize with Jun proteins to form stable AP-1 complexes. However, Fra-containing AP-1 complexes have low transactivation potential. Furthermore, Fra-1 repressed AP-1 activity induced by either TPA or expression of c-Jun and c-Fos. We therefore conclude that inhibitory AP-1 complexes composed of Jun-Fra heterodimers, induced by BHQ, antagonize the transcriptional effects of the tumor promoter TPA, which are mediated by Jun-Fos heterodimers. Since AP-1 is an important mediator of tumor promoter action, these findings may explain the anti-tumor-promoting activity of phenolic antioxidants.
Resumo:
The enzymatic kinetic resolution of tert-butyl 2-(1-hydroxyethyl) phenylcarbamate via lipase-catalyzed transesterification reaction was studied. We investigated several reaction conditions and the carbamate was resolved by Candida antarctica lipase B (CAL-B), leading to the optically pure (R)- and (S)-enantiomers. The enzymatic process showed excellent enantioselectivity (E > 200). (R)- and (S)-tert-butyl 2-(1-hydroxyethyl) phenylcarbamate were easily transformed into the corresponding (R)and (S)-1-(2-aminophenyl)ethanols.
Resumo:
Reactivation of telomerase has been implicated in human tumorigenesis, but the underlying mechanisms remain poorly understood. Here we report the presence of recurrent somatic mutations in the TERT promoter in cancers of the central nervous system (43%), bladder (59%), thyroid (follicular cell-derived, 10%) and skin (melanoma, 29%). In thyroid cancers, the presence of TERT promoter mutations (when occurring together with BRAF mutations) is significantly associated with higher TERT mRNA expression, and in glioblastoma we find a trend for increased telomerase expression in cases harbouring TERT promoter mutations. Both in thyroid cancers and glioblastoma, TERT promoter mutations are significantly associated with older age of the patients. Our results show that TERT promoter mutations are relatively frequent in specific types of human cancers, where they lead to enhanced expression of telomerase.
Resumo:
O cancro é uma das principais causas de morte relacionada com doença, sendo responsável por cerca de 14 milhões de novos casos e 8,2 milhões de mortes em todo o mundo. Os tipos de cancro mais comuns são o cancro do pulmão, mama, colorretal e da próstata, sendo o cancro do pulmão, colorretal e da mama os mais mortais. Embora cada tipo de cancro apresente alterações únicas que são adquiridas durante a carcinogénese, biomarcadores universais de malignidade e métodos para estabelecer a progressão da doença em diferentes neoplasias não existem e continuam a ser um grande desafio em oncologia clínica. Uma característica do cancro é a manutenção dos telómeros, a qual é crucial para a autorrenovação de todos os tumores malignos. A ativação da telomerase ocorre através da expressão da transcriptase reversa humana (hTERT) e tem sido relatado que a sua expressão aumenta marcadamente na invasão tumoral. O mecanismo de regulação da hTERT não está completamente elucidado; no entanto, tem sido relatado que a hipermetilação de ilhas CpG apresenta um papel essencial na expressão da hTERT em células cancerígenas telomerase-positivas. O nosso grupo recentemente identificou uma região específica no promotor da hTERT (denominada THOR) que está hipermetilada e associada com a ativação da telomerase em tecido cancerígeno. THOR foi capaz de prever a progressão do tumor e evolução clínica do paciente em diversos tumores pediátricos e adultos. Objetivo do estudo - Pretendemos investigar se a metilação do THOR pode ser um biomarcador de doença maligna e de evolução clínica do paciente em diferentes cancros adultos.
Resumo:
Somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) gene, mainly at positions c.-124 and c.-146 bp, are frequent in several human cancers; yet its presence in gastrointestinal stromal tumor (GIST) has not been reported to date. Herein, we searched for the presence and clinicopathological association of TERT promoter mutations in genomic DNA from 130 bona fide GISTs. We found TERT promoter mutations in 3.8% (5/130) of GISTs. The c.-124C>T mutation was the most common event, present in 2.3% (3/130), and the c.-146C>T mutation in 1.5% (2/130) of GISTs. No significant association was observed between TERT promoter mutation and patient's clinicopathological features. The present study establishes the low frequency (4%) of TERT promoter mutations in GISTs. Further studies are required to confirm our findings and to elucidate the hypothetical biological and clinical impact of TERT promoter mutation in GIST pathogenesis.
Resumo:
Context: Telomerase promoter mutations (TERT) were recently described in follicular cell-derived thyroid carcinomas (FCDTC) and seem to be more prevalent in aggressive cancers. Objectives: We aimed to evaluate the frequency of TERT promoter mutations in thyroid lesions and to investigate the prognostic significance of such mutations in a large cohort of patients with differentiated thyroid carcinomas (DTCs). Design: This was a retrospective observational study. Setting and Patients: We studied 647 tumors and tumor-like lesions. A total of 469 patients with FCDTC treated and followed in five university hospitals were included. Mean follow-up (±SD) was 7.8 ± 5.8 years. Main Outcome Measures: Predictive value of TERT promoter mutations for distant metastasization, disease persistence at the end of follow-up, and disease-specific mortality. Results: TERT promoter mutations were found in 7.5% of papillary carcinomas (PTCs), 17.1% of follicular carcinomas, 29.0% of poorly differentiated carcinomas, and 33.3% of anaplastic thyroid carcinomas. Patients with TERT-mutated tumors were older (P < .001) and had larger tumors (P = .002). In DTCs, TERT promoter mutations were significantly associated with distant metastases (P < .001) and higher stage (P < .001). Patients with DTC harboring TERT promoter mutations were submitted to more radioiodine treatments (P = .009) with higher cumulative dose (P = .004) and to more treatment modalities (P = .001). At the end of follow-up, patients with TERT-mutated DTCs were more prone to have persistent disease (P = .001). TERT promoter mutations were significantly associated with disease-specific mortality [in the whole FCDTC (P < .001)] in DTCs (P < .001), PTCs (P = .001), and follicular carcinomas (P < .001). After adjusting for age at diagnosis and gender, the hazard ratio was 10.35 (95% confidence interval 2.01–53.24; P = .005) in DTC and 23.81 (95% confidence interval 1.36–415.76; P = .03) in PTCs. Conclusions: TERT promoter mutations are an indicator of clinically aggressive tumors, being correlated with worse outcome and disease-specific mortality in DTC. TERT promoter mutations have an independent prognostic value in DTC and, notably, in PTC.
Resumo:
Somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) gene, mainly at positions c. − 124 and c. − 146 bp, are frequent in several human cancers; yet its presence in gastrointestinal stromal tumor (GIST) has not been reported to date. Herein, we searched for the presence and clinicopathological association of TERT promoter mutations in genomic DNA from 130 bona fide GISTs. We found TERT promoter mutations in 3.8% (5/130) of GISTs. The c. − 124C4T mutation was the most common event, present in 2.3% (3/130), and the c. − 146C4T mutation in 1.5% (2/130) of GISTs. No significant association was observed between TERT promoter mutation and patient’s clinicopathological features. The present study establishes the low frequency (4%) of TERT promoter mutations in GISTs. Further studies are required to confirm our findings and to elucidate the hypothetical biological and clinical impact of TERT promoter mutation in GIST pathogenesis.
Resumo:
A preliminary study of the pharmacokinetic parameters of t-Butylaminoethyl disulfide was performed after administration of two different single doses (35 and 300 mg/kg) of either the cold or labelled drug. Plasma or blood samples were treated with dithiothreitol, perchloric acid, and, after filtration, submitted to further purification with anionic resein. In the final step, the drug was retained on a cationic resin column, eluted with NaCl 1M and detected according to the method of Ellman (1958). Alternatively, radioactive drug was detected by liquid scintillation counting. The results corresponding to the smaller dose of total drug suggested a pharmacokinetic behavior related to a one open compartment model with the following parameters: area under the intravenous curve (AUC i.v.):671 ± 14; AUC oral: 150 ± 40 µg.min. ml [raised to the power of -1]; elimination rate constant: 0.071 min [raised to the power of -1]; biological half life: 9.8 min; distribution volume: 0.74 ml/g. For the higher dose, the results seemed to obey a more complex undertermined model. Combining the results, the occurence of a dose-dependent pharmacokinetic behavior is suggested, the drug being rapidly absorbed and rapidly eliminated; the elimination process being related mainly to metabolization. The drug seems to be more toxic when administered I.V. because by this route it escapes first pass metabolism, while being quickly distributed to tissues. The maximum tolerated blood level seems to be around 16 µg/ml.
Resumo:
A preliminary study of the pharmacokinetic parameters of t-Butylaminoethanethiol (TBAESH) was performed after administration of a single dose (35 mg/kg) either orally or intravenously. Plasma or blood samples were treated with dithiothreitol, perchloric acid and, after filtration, submitted to further purification with anionic resin. In the final step the drug was retained on a cationic resin column, eluted with NaCl lM and detected according to the method of Ellman (1958). The results suggested a pharmacokinetic behavior related to a one open compartment model with the following values for the total drug: area under the intravenous curve (AUC i.v.): 443(+ ou -) 24.0; AUC oral: 85.5(+ ou -) 14.5 ug min.ml(elevado a -1); elimination rate constant: 0.069(+ ou -) 0.0055 min(elevado a -1), biological half-life: 10.0(+ ou -) 0.80 min; distribution volume 1.15(+ ou -) 0.15 ml/g; biodisponibility: 0.19(+ ou -) 0.02. From a pharmacokinetic standpoint, TBAESH seems to have no advantage over the analogous disulfide compound.
Resumo:
Summary For the nutritional management of bone health and the prevention of osteoporosis it is important to identify nutrients that positively influence the bone remodeling process at the cellular level. Soy isoflavones show promising osteoprotective effects in animals and humans but their mechanism of action in bone cells is yet poorly understood. Firstly, soy tissue cultures were characterized as a new and optimized source of isoflavones. A large variability in the isoflavone content was observed and high-producing strains (46.3 mg/g dry wt isoflavones) were identified. In the Ishikawa cells bioassay, the estrogenicity of isoflavones was confirmed to be 1000 to 10000 less than 17Mestradiol and that of the malonyl forms was shown for the first time (EC50 of 350 nM and 1880 nM for malonylgenistin and malonyldaidzin, respectively). The estrogenic activity of soya tissue culture extracts correlated to their isoflavone content. Secondly, the effects of phytonutrients on BMP-2 gene expression and on the mevalonate synthesis pathway, as key mediators of bone formation, were investigated. Dietary achievable concentrations of genistein and daidzein (10vM), and statins (4xM) but not 17M estradiol (10nM), induced BMP-2 gene expression (by up to 3-fold) and inhibited the cholesterol biosynthetic pathway (by up to 50%) in the human osteoblastic cell line hP0B¬tert. In addition, several plant extracts (Cyperus rotundus, Lindera benzoin and Cnidium monnieri) induced BMP-2 gene expression but this induction was not restricted to the inhibition of the cholesterol synthesis pathway neither to the estrogenicity. Finally, the gene expression profiles during hP0B-tert differentiation induced by vitamin D and dexamethasone were analyzed with the Affymetrix human GeneChip. 1665 different genes and 98 ESTs were significantly regulated. The expression profiles of bone-related genes was largely in agreement with previously documented patterns, supporting the physiological relevance of the genomic results and the hP0B-tert cell line as a valid model of human osteoblast differentiation. The expression of alternative differentiation markers during the osteogenic treatment of hP0B-tert cells indicated that the adipocyte and myoblast differentiation pathways were repressed, confirming that these culture conditions allowed only osteoblast differentiation. The gene ontology analysis identified further sub-groups of genes that may be involved in the bone formation process. Aims of the thesis In order to define new strategies for the nutritional management of bone health and for the prevention of osteoporosis the major goal of the present work was to investigate the potential of phytonutrients to positively modulate the bone formation process at the cellular level and, in particular: 1.To select and optimise alternative plant sources containing high levels of isoflavones with estrogenic activity (Chapter 3). 2.To compare the effects of statins and phytonutrients on BMP-2 gene expression and on the mevalonate synthesis pathway and to select new plant extracts with a bone anabolic potential (Chapter 4). 3.To further characterize the new human periosteal cell line, hP0B-tert, as a bone- formation model, by elucidating its gene expression profile during differentiation induced by vitamin D and dexamethasone (Chapter 5).
Resumo:
A new method for oxidative folding of synthetic polypeptides assembled by stepwise solid phase synthesis is introduced. Folding is obtained in excellent yields by reacting S-tert-butylthiolated polypeptides with a 100-fold molar excess of cysteine at 37 degrees C in a slightly alkaline buffer containing chaotropic salts, and in the presence of air-oxygen. This novel protocol has been applied to the folding of S-tert-butylthiolated human thymus and activation-regulated chemokine (hu-TARC) derivatives as well as to larger segments of Plasmodium falciparum and Plasmodium berghei circumsporozoite proteins. Folded P. falciparum polypeptides have been used as substrates of endoproteinase Glu-C (Glu-C) and endoproteinase Asp-N (Asp-N) in an attempt to identify their disulfide connectivities. Particular practical advantages of the present method are (i) easy purification and storage of the S-protected peptide derivatives, (ii) elimination of the risk of cysteine alkylation during the acidolytic cleavage deprotection and resin cleavage steps, (iii) possibility to precisely evaluate the extent of folding and disulfide bond formation by mass spectrometry, and (iv) facile recovery of the final folded product.