986 resultados para terrestrial ecosystems


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The growth rate of atmospheric carbondioxide(CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO 2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Because of its prominent role in global biomass storage, land vegetation is the most obvious biota to be investigated for records of dramatic ecologic crisis in Earth history. There is accumulating evidence that, throughout the world, sedimentary organic matter preserved in latest Permian deposits is characterized by unparalleled abundances of fungal remains, irrespective of depositional environment (marine, lacustrine, fluviatile), floral provinciality, and climatic zonation. This fungal event can be considered to reflect excessive dieback of arboreous vegetation, effecting destabilization and subsequent collapse of terrestrial ecosystems with concomitant loss of standing biomass. Such a scenario is in harmony with predictions that the Permian-Triassic ecologic crisis was triggered by the effects of severe changes in atmospheric chemistry arising from the rapid eruption of the Siberian Traps flood basalts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The protection of organic carbon stored in forests is considered as an important method for mitigating climate change. Like terrestrial ecosystems, coastal ecosystems store large amounts of carbon, and there are initiatives to protect these ‘blue carbon’ stores. Organic carbon stocks in tidal salt marshes and mangroves have been estimated, but uncertainties in the stores of seagrass meadows—some of the most productive ecosystems on Earth—hinder the application of marine carbon conservation schemes. Here, we compile published and unpublished measurements of the organic carbon content of living seagrass biomass and underlying soils in 946 distinct seagrass meadows across the globe. Using only data from sites for which full inventories exist, we estimate that, globally, seagrass ecosystems could store as much as 19.9 Pg organic carbon; according to a more conservative approach, in which we incorporate more data from surface soils and depth-dependent declines in soil carbon stocks, we estimate that the seagrass carbon pool lies between 4.2 and 8.4 Pg carbon. We estimate that present rates of seagrass loss could result in the release of up to 299 Tg carbon per year, assuming that all of the organic carbon in seagrass biomass and the top metre of soils is remineralized.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Anthropogenically driven environmental changes affect our planet at an unprecedented scale, and are considered to be a key threat to biodiversity. According to the World Health Organisation, anthropogenic noise is one of the most hazardous forms of anthropogenically driven environmental change and is recognised as a major global pollutant. However, crucial advances in the rapidly emerging research on noise pollution focus exclusively on single aspects of noise pollution, e.g. on behaviour, physiology, terrestrial ecosystems or by focusing on certain taxa. Given that more than two thirds of our planet is covered with water, there is a pressing need to get a holistic understanding of the effects of anthropogenic noise in aquatic ecosystems. We found experimental evidence for negative effects of anthropogenic noise on an individual’s development, physiology, and/or behaviour in both invertebrates and vertebrates. We also found that species differ in their response to noise, and highlight the potential underlying mechanisms for these differences. Finally, we point out challenges in the study of aquatic noise pollution and provide directions for future research, which will enhance our understanding of this globally present pollutant.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Climate change and carbon (C) sequestration are a major focus of research in the twenty-first century. Globally, soils store about 300 times the amount of C that is released per annum through the burning of fossil fuels (Schulze and Freibauer 2005). Land clearing and introduction of agricultural systems have led to rapid declines in soil C reserves. The recent introduction of conservation agricultural practices has not led to a reversing of the decline in soil C content, although it has minimized the rate of decline (Baker et al. 2007; Hulugalle and Scott 2008). Lal (2003) estimated the quantum of C pools in the atmosphere, terrestrial ecosystems, and oceans and reported a “missing C” component in the world C budget. Though not proven yet, this could be linked to C losses through runoff and soil erosion (Lal 2005) and a lack of C accounting in inland water bodies (Cole et al. 2007). Land management practices to minimize the microbial respiration and soil organic C (SOC) decline such as minimum tillage or no tillage were extensively studied in the past, and the soil erosion and runoff studies monitoring those management systems focused on other nutrients such as nitrogen (N) and phosphorus (P).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The potential for conservation of individual species has been greatly advanced by the International Union for Conservation of Nature's (IUCN) development of objective, repeatable, and transparent criteria for assessing extinction risk that explicitly separate risk assessment from priority setting. At the IV World Conservation Congress in 2008, the process began to develop and implement comparable global standards for ecosystems. A working group established by the IUCN has begun formulating a system of quantitative categories and criteria, analogous to those used for species, for assigning levels of threat to ecosystems at local, regional, and global levels. A final system will require definitions of ecosystems; quantification of ecosystem status; identification of the stages of degradation and loss of ecosystems; proxy measures of risk (criteria); classification thresholds for these criteria; and standardized methods for performing assessments. The system will need to reflect the degree and rate of change in an ecosystem's extent, composition, structure, and function, and have its conceptual roots in ecological theory and empirical research. On the basis of these requirements and the hypothesis that ecosystem risk is a function of the risk of its component species, we propose a set of four criteria: recent declines in distribution or ecological function, historical total loss in distribution or ecological function, small distribution combined with decline, or very small distribution. Most work has focused on terrestrial ecosystems, but comparable thresholds and criteria for freshwater and marine ecosystems are also needed. These are the first steps in an international consultation process that will lead to a unified proposal to be presented at the next World Conservation Congress in 2012.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

About this book: Over 100 authors present 25 contributions on the impacts of global change on terrestrial ecosystems including:key processes of the earth system such as the CO2 fertilization effect, shifts in disturbances and biome distribution, the saturation of the terrestrial carbon sink, and changes in functional biodiversity,ecosystem services such the production of wheat, pest control, and carbon storage in croplands, and sensitive regions in the world threaten by rapid changes in climate and land use such as high latitudes ecosystems, tropical forest in Southeast Asia, and ecosystems dominated by Monsoon climate.The book also explores new research developments on spatial thresholds and nonlinearities, the key role of urban development in global biogeochemical processes, and the integration of natural and social sciences to address complex problems of the human-environment system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract As regional and continental carbon balances of terrestrial ecosystems become available, it becomes clear that the soils are the largest source of uncertainty. Repeated inventories of soil organic carbon (SOC) organized in soil monitoring networks (SMN) are being implemented in a number of countries. This paper reviews the concepts and design of SMNs in ten countries, and discusses the contribution of such networks to reducing the uncertainty of soil carbon balances. Some SMNs are designed to estimate country-specific land use or management effects on SOC stocks, while others collect soil carbon and ancillary data to provide a nationally consistent assessment of soil carbon condition across the major land-use/soil type combinations. The former use a single sampling campaign of paired sites, while for the latter both systematic (usually grid based) and stratified repeated sampling campaigns (5–10 years interval) are used with densities of one site per 10–1,040 km². For paired sites, multiple samples at each site are taken in order to allow statistical analysis, while for the single sites, composite samples are taken. In both cases, fixed depth increments together with samples for bulk density and stone content are recommended. Samples should be archived to allow for re-measurement purposes using updated techniques. Information on land management, and where possible, land use history should be systematically recorded for each site. A case study of the agricultural frontier in Brazil is presented in which land use effect factors are calculated in order to quantify the CO2 fluxes from national land use/management conversion matrices. Process-based SOC models can be run for the individual points of the SMN, provided detailed land management records are available. These studies are still rare, as most SMNs have been implemented recently or are in progress. Examples from the USA and Belgium show that uncertainties in SOC change range from 1.6–6.5 Mg C ha−1 for the prediction of SOC stock changes on individual sites to 11.72 Mg C ha−1 or 34% of the median SOC change for soil/land use/climate units. For national SOC monitoring, stratified sampling sites appears to be the most straightforward attribution of SOC values to units with similar soil/land use/climate conditions (i.e. a spatially implicit upscaling approach). Keywords Soil monitoring networks - Soil organic carbon - Modeling - Sampling design

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The semiaquatic platypus and terrestrial echidnas (spiny anteaters) are the only living egg-laying mammals (monotremes). The fossil record has provided few clues as to their origins and the evolution of their ecological specializations; however, recent reassignment of the Early Cretaceous Teinolophos and Steropodon to the platypus lineage implies that platypuses and echidnas diverged >112.5 million years ago, reinforcing the notion of monotremes as living fossils. This placement is based primarily on characters related to a single feature, the enlarged mandibular canal, which supplies blood vessels and dense electrosensory receptors to the platypus bill. Our reevaluation of the morphological data instead groups platypus and echidnas to the exclusion of Teinolophos and Steropodon and suggests that an enlarged mandibular canal is ancestral for monotremes (partly reversed in echidnas, in association with general mandibular reduction). A multigene evaluation of the echidna–platypus divergence using both a relaxed molecular clock and direct fossil calibrations reveals a recent split of 19–48 million years ago. Platypus-like monotremes (Monotrematum) predate this divergence, indicating that echidnas had aquatically foraging ancestors that reinvaded terrestrial ecosystems. This ecological shift and the associated radiation of echidnas represent a recent expansion of niche space despite potential competition from marsupials. Monotremes might have survived the invasion of marsupials into Australasia by exploiting ecological niches in which marsupials are restricted by their reproductive mode. Morphology, ecology, and molecular biology together indicate that Teinolophos and Steropodon are basal monotremes rather than platypus relatives, and that living monotremes are a relatively recent radiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interpreting acoustic recordings of the natural environment is an increasingly important technique for ecologists wishing to monitor terrestrial ecosystems. Technological advances make it possible to accumulate many more recordings than can be listened to or interpreted, thereby necessitating automated assistance to identify elements in the soundscape. In this paper we examine the problem of estimating avian species richness by sampling from very long acoustic recordings. We work with data recorded under natural conditions and with all the attendant problems of undefined and unconstrained acoustic content (such as wind, rain, traffic, etc.) which can mask content of interest (in our case, bird calls). We describe 14 acoustic indices calculated at one minute resolution for the duration of a 24 hour recording. An acoustic index is a statistic that summarizes some aspect of the structure and distribution of acoustic energy and information in a recording. Some of the indices we calculate are standard (e.g. signal-to-noise ratio), some have been reported useful for the detection of bioacoustic activity (e.g. temporal and spectral entropies) and some are directed to avian sources (spectral persistence of whistles). We rank the one minute segments of a 24 hour recording in descending order according to an "acoustic richness" score which is derived from a single index or a weighted combination of two or more. We describe combinations of indices which lead to more efficient estimates of species richness than random sampling from the same recording, where efficiency is defined as total species identified for given listening effort. Using random sampling, we achieve a 53% increase in species recognized over traditional field surveys and an increase of 87% using combinations of indices to direct the sampling. We also demonstrate how combinations of the same indices can be used to detect long duration acoustic events (such as heavy rain and cicada chorus) and to construct long duration (24 h) spectrograms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aboveground–belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m2 plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To protect terrestrial ecosystems and humans from contaminants many countries and jurisdictions have developed soil quality guidelines (SQGs). This study proposes a new framework to derive SQGs and guidelines for amended soils and uses a case study based on phytotoxicity data of copper (Cu) and zinc (Zn) from field studies to illustrate how the framework could be applied. The proposed framework uses normalisation relationships to account for the effects of soil properties on toxicity data followed by a species sensitivity distribution (SSD) method to calculate a soil added contaminant limit (soil ACL) for a standard soil. The normalisation equations are then used to calculate soil ACLs for other soils. A soil amendment availability factor (SAAF) is then calculated as the toxicity and bioavailability of pure contaminants and contaminants in amendments can be different. The SAAF is used to modify soil ACLs to ACLs for amended soils. The framework was then used to calculate soil ACLs for copper (Cu) and zinc (Zn). For soils with pH of 4-8 and OC content of 1-6%, the ACLs range from 8 mg/kg to 970 mg/kg added Cu. The SAAF for Cu was pH dependant and varied from 1.44 at pH 4 to 2.15 at pH 8. For soils with pH of 4-8 and OC content of 1-6%, the ACLs for amended soils range from 11 mg/kg to 2080 mg/kg added Cu. For soils with pH of 4-8 and a CEC from 5-60, the ACLs for Zn ranged from 21 to 1470 mg/kg added Zn. A SAAF of one was used for Zn as it concentrations in plant tissue and soil to water partitioning showed no difference between biosolids and soluble Zn salt treatments, indicating that Zn from biosolids and Zn salts are equally bioavailable to plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is growing interest in the role that apex predators play in shaping terrestrial ecosystems and maintaining trophic cascades. In line with the mesopredator release hypothesis, Australian dingoes (Canis lupus dingo and hybrids) are assumed by many to regulate the abundance of invasive mesopredators, such as red foxes Vulpes vulpes and feral cats Felis catus, thereby providing indirect benefits to various threatened vertebrates. Several recent papers have claimed to provide evidence for the biodiversity benefits of dingoes in this way. Nevertheless, in this paper we highlight several critical weaknesses in the methodological approaches used in many of these reports, including lack of consideration for seasonal and habitat differences in activity, the complication of simple track-based indices by incorporating difficult-to-meet assumptions, and a reduction in sensitivity for assessing populations by using binary measures rather than potentially continuous measures. Of the 20 studies reviewed, 15 of them (75%) contained serious methodological flaws, which may partly explain the inconclusive nature of the literature nvestigating interactions between invasive Australian predators. We therefore assert that most of the “growing body of evidence” for mesopredator release is merely an inconclusive growing body of literature only. We encourage those interested in studying the ecological roles of dingoes relative to invasive mesopredators and native prey species to account for the factors we identify, and caution the value of studies that have not done so.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ants are the dominant soil faunal group in many if not most terrestrial ecosystems, and play a key role in soil structure and function. This study documents the impacts of invasion by the exotic cat’s claw creeper vine, Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) on surface-situated (epigaeic) and subterranean (hypogaeic) ant communities in subtropical SE Queensland Australia where it is a major environmental weed of riparian areas, rainforest communities and remnant natural vegetation, smothering standing vegetation and causing canopy collapse. Soil ants were sampled in infested and uninfested areas at eight sites spanning both riparian and non-riparian habitats in subtropical SE Queensland. Patterns of ant species composition and functional grouping in response to patch invasion status, landscape type and habitat stratum were investigated using ANOVA and non-metric multidimensional scaling ordination. The epigaeic and subterranean strata supported markedly different ant assemblages, and ant communities also differed between riparian and non-riparian habitats. However, M. unguis-cati invasion had a surprisingly limited impact. There was a tendency for ant abundance and species richness to be lower in infested patches, and overall species composition was different between infested and uninfested patches, but these differences were relatively small, and did not occur consistently across sites. There were changes in functional group composition that conformed to known functional group responses to environmental change, but these were similarly limited and inconsistent across sites. Our study has shown that ant communities are surprisingly resilient to invasion by M. unguis-cati, and serves as a warning against making assumptions about invasion impacts based on visual appearances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Top-predators can sometimes be important for structuring fauna assemblages in terrestrial ecosystems. Through a complex trophic cascade, the lethal control of top-predators has been predicted to elicit positive population responses from mesopredators that may in turn increase predation pressure on prey species of concern. In support of this hypothesis, many relevant research papers, opinion pieces and literature reviews identify three particular case studies as supporting evidence for top-predator control-induced release of mesopredators in Australia. However, many fundamental details essential for supporting this hypothesis are missing from these case studies, which were each designed to investigate alternative aims. Here, we re-evaluate the strength of evidence for top-predator control-induced mesopredator release from these three studies after comprehensive analyses of associated unpublished correlative and experimental data. Circumstantial evidence alluded to mesopredator releases of either the European Red Fox (Vulpes vulpes) or feral Cat (Felis catus) coinciding with Dingo (Canis lupus dingo) control in each case. Importantly, however, substantial limitations in predator population sampling techniques and/or experimental designs preclude strong assertions about the effect of lethal control on mesopredator populations from these studies. In all cases, multiple confounding factors and plausible alternative explanations for observed changes in predator populations exist. In accord with several critical reviews and a growing body of demonstrated experimental evidence on the subject, we conclude that there is an absence of reliable evidence for top-predator control-induced mesopredator release from these three case studies. Well-designed and executed studies are critical for investigating potential top-predator control-induced mesopredator release.