31 resultados para tephritid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The invasive fruit fly, Bactrocera invadens Drew, Tsuruta & White, is a highly polyphagous fruit pest that occurs predominantly in Africa yet has its origins in the Indian subcontinent. It is extremely morphologically and genetically similar to the Oriental fruit fly, Bactrocera dorsalis (Hendel); as such the specific relationship between these two species is unresolved. We assessed prezygotic compatibility between B. dorsalis and B. invadens using standardized field cage mating tests, which have proven effectiveness in tephritid cryptic species studies. These tests were followed by an assessment of postzygotic compatibility by examining egg viability, larval and pupal survival, and sex ratios of offspring produced from parental and subsequent F1 crosses to examine for hybrid breakdown as predicted under a two-species hypothesis. B. dorsalis was sourced from two countries (Pakistan and China), and each population was compared with B. invadens from its type locality of Kenya. B. invadens mated randomly with B. dorsalis from both localities, and there were generally high levels of hybrid viability and survival resulting from parental and F1 crosses. Furthermore, all but one hybrid cross resulted in equal sex ratios, with the single deviation in favor of males and contrary to expectations under Haldane's rule. These data support the hypothesis that B. dorsalis and B. invadens represent the same biological species, an outcome that poses significant implications for pest management and international trade for sub-Saharan Africa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poisoned protein baits comprise a recognized method for controlling tephritid fruit flies in the form of a ‘lure-and-kill’ technique. However, little is known about how a fly's internal protein and carbohydrate levels (i.e. nutritional status) might influence the efficacy of this control. In the present study, the relationships between the internal levels of protein (as measured by total body nitrogen) and carbohydrate (as measured by total body carbon) of the fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) are investigated, as well as its foraging behaviours in response to protein, fruit and cue-lure (a male-specific attractant) baits. Small cage behavioural experiments are conducted using flies from cultures of different nutritional status and wild flies sampled from the field during the fruiting cycle of a guava crop. For female flies, increasing total body nitrogen is correlated with decreased protein foraging and increased oviposition activity; increasing total body carbon levels generate the same behavioural changes except that the oviposition response is not significant. For males, there are no significant correlations between changes in total body nitrogen and total body carbon and protein or cue-lure foraging. For wild flies from the guava orchard, almost all of them are sexually mature when entering the crop and, over the entire season, total body nitrogen and total body carbon levels are such that protein hunger is unlikely for most flies. The results infer strongly that the requirements of wild, sexually mature flies for protein are minimal and that flies can readily gain sufficient nutrients from wild sources for their physiological needs. The results offer a mechanistic explanation for the poor response of male and mature female fruit flies to protein bait spray.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laboratory-reared insects are widely known to have significantly reduced genetic diversity in comparison to wild populations; however, subtle behavioural changes between laboratory-adapted and wild or ‘wildish’ (i.e., within one or very few generations of field collected material) populations are less well understood. Quantifying alterations in behaviour, particularly sexual, in laboratory-adapted insects is important for mass-reared insects for use in pest management strategies, especially those that have a sterile insect technique component. We report subtle changes in sexual behaviour between ‘wildish’ Bactrocera dorsalis flies (F1 and F2) from central and southern Thailand and the same colonies 12 months later when at six generations from wild. Mating compatibility tests were undertaken under standardised semi-natural conditions, with number of homo/heterotypic couples and mating location in field cages analysed via compatibility indices. Central and southern populations of B. dorsalis displayed positive assortative mating in the 2010 trials but mated randomly in the 2011 trials. ‘Wildish’ southern Thailand males mated significantly earlier than central Thailand males in 2010; this difference was considerably reduced in 2011, yet homotypic couples from southern Thailand still formed significantly earlier than all other couple combinations. There was no significant difference in couple location in 2010; however, couple location significantly differed among pair types in 2011 with those involving southern Thailand females occurring significantly more often on the tree relative to those with central Thailand females. Relative participation also changed with time, with more southern Thailand females forming couples relative to central Thailand females in 2010; this difference was considerably decreased by 2011. These results reveal how subtle changes in sexual behaviour, as driven by laboratory rearing conditions, may significantly influence mating behaviour between laboratory-adapted and recently colonised tephritid fruit flies over a relatively short period of time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effectiveness of any trapping system is highly dependent on the ability to accurately identify the specimens collected. For many fruit fly species, accurate identification (= diagnostics) using morphological or molecular techniques is relatively straightforward and poses few technical challenges. However, nearly all genera of pest tephritids also contain groups of species where single, stand-alone tools are not sufficient for accurate identification: such groups include the Bactrocera dorsalis complex, the Anastrepha fraterculus complex and the Ceratitis FAR complex. Misidentification of high-impact species from such groups can have dramatic consequences and negate the benefits of an otherwise effective trapping program. To help prevent such problems, this chapter defines what is meant by a species complex and describes in detail how the correct identification of species within a complex requires the use of an integrative taxonomic approach. Integrative taxonomy uses multiple, independent lines of evidence to delimit species boundaries, and the underpinnings of this approach from both the theoretical speciation literature and the systematics/taxonomy literature are described. The strength of the integrative approach lies in the explicit testing of hypotheses and the use of multiple, independent species delimitation tools. A case is made for a core set of species delimitation tools (pre- and post-zygotic compatibility tests, multi-locus phylogenetic analysis, chemoecological studies, and morphometric and geometric morphometric analyses) to be adopted as standards by tephritologists aiming to resolve economically important species complexes. In discussing the integrative approach, emphasis is placed on the subtle but important differences between integrative and iterative taxonomy. The chapter finishes with a case study that illustrates how iterative taxonomy applied to the B. dorsalis species complex led to incorrect taxonomic conclusions, which has had major implications for quarantine, trade, and horticultural pest management. In contrast, an integrative approach to the problem has resolved species limits in this taxonomically difficult group, meaning that robust diagnostics are now available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromolaena, or Siam weed, is a serious problem in several tropical and sub-tropical areas around the world. In our own region, it is a serious weed in New Guinea, East Timor and Indonesia and is also under an eradication regime in North Queensland. The chapter summarises current knowledge about the taxonomy, biology, distribution, ecology, impacts and control of the weed. Biological control has been a major multinational initiative against this weed in recent years and these efforts are described in some detail. Interestingly agents have not been universally effective because of weed biotype differences and climate. Considerable success has been achieved in New Guinea, principally with the tephritid fly Cecidocares connex and by the efforts of Michael Day, Rachel McFadyen and Graham Donnelly from Alan Fletcher Research Station.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most serious pest of the native tephritid species in Australia and a significant market access impediment for fruit commodities from any area where this species is endemic. An area-wide management (AWM) program was implemented in the Central Burnett district of Queensland with the aim of improving fruit fly control and enhancing market access opportunities for citrus and other fruits produced in the district. The primary control measures adopted in the AWM system included bait spraying of commercial and non-commercial hosts and the year-round installation of male annihilation technology (MAT) carriers in both orchards and town areas. The MAT carrier used consisted of a dental wick impregnated with 1 ml cue-lure [4-(4-acetoxyphenol)-2-butanone] and 1 ml Malathion 500 EC in a plastic cup. The application of these control measures from 2003 to 2007 resulted in overall suppression of fruit fly populations across the entire district. Male trap catches at the peak activity time were reduced by 95% and overall fruit fly infestation in untreated backyard fruit of town areas reduced from 60.8% to 21.8%. Our results demonstrate remarkable improvement in fruit fly control and economic benefit to the Central Burnett horticulture. Therefore, commercial growers are continuing the AWM program as a long-term, industry funded activity, to provide an additional layer of phytosanitary security for market access of fruit commodities from this district.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Citrus crops are considered to be relatively poor hosts for Queensland fruit fly, Bactrocera tryoni (Froggatt), as for other tephritid species. Australian citrus growers and crop consultants have reported observable differences in susceptibility of different citrus cultivars under commercial growing conditions. In this study we conducted laboratory tests and field surveys to determine susceptibility to B. tryoni of six citrus cultivars [(Eureka lemon (Citrus limon (L.) Osbeck); Navel and Valencia oranges (C. sinensis (L.) Osbeck); and Imperial, Ellendale, and Murcott mandarins (C. reticulata Blanco)]. The host susceptibility of these citrus cultivars was quantified by a Host Susceptibility Index, which is defined as the number of adult flies produced per gram of fruit infested at a calculated rate of one egg per gram of fruit. The HSI was ranked as Murcott (0.083) > Imperial (0.052) ≥ Navel (0.026) ≥ Ellendale (0.020) > Valencia (0.008) ≥ Eureka (yellow) (0.002) > Eureka (green) (0). Results of the laboratory study were in agreement with the level of field infestation in the four citrus cultivars (Eureka lemon, Imperial, Ellendale, and Murcott mandarins) that were surveyed from commercial orchards under baiting treatments against fruit flies in the Central Burnett district of Queensland. Field surveys of citrus hosts from the habitats not subject to fruit fly management showed that the numbers of fruit flies produced per gram of fruit were much lower, compared with the more susceptible noncitrus hosts, such as guava (Psidium guajava L.), cherry guava (P. littorale Raddi), mulberry (Morus nigra L.), loquat (Eriobotrya japonica (Thunb.) Lindl.), and pear (Pyrus communis L.). Therefore, the major citrus crops commercially cultivated in Australia have a relatively low susceptibility to B. tryoni, with Eureka lemons being a particularly poor host for this tephritid fruit fly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using caged guava trees in Queensland, Australia, provided with food and oviposition sites, the foraging behaviour of females of the tephritid Bactrocera tryoni was investigated in relation to hunger for protein, the presence or absence of bacteria as a source of protein, the degree of prior experience with host fruit and quality of host fruit for oviposition. One aim was to evaluate whether it is immature or mature B. tryoni females that are responsible for initially inoculating host fruit surfaces with "fruit-fly-type" bacteria, the odour of which is known to attract B. tryoni females. Three-week-old immature females provided with sucrose but deprived of protein from eclosion had a much greater propensity than 3-week-old protein-fed mature females to visit vials containing fruit-fly-type bacteria, irrespective of whether vials were associated with adjacent host fruit or not. In the absence of associated bacteria in vials, immature females had a much lower propensity than mature females to visit host fruit. In the presence of bacteria in vials, however, propensity of immature and mature females to visit fruit was about equal. Mature (but not immature) females were more inclined to visit fruit that ranked higher for oviposition (nectarines) than fruit that ranked lower (sweet oranges). Mature females that attempted oviposition during a single 3-min exposure period to a nectarine prior to release were much more likely to find a nectarine than were mature females naive to fruit or immature females with or without prior contact with fruit. Exposure to a nectarine before release did not affect the propensity of either mature or immature females to alight on an odourless visual model of a nectarine, however. As judged by numbers of leaves visited, protein-deprived immature females were more active than protein-fed mature females, irrespective of the sorts of resources on a tree. It was concluded that: the 1st B. tryoni females to arrive on the fruit of a host tree and therefore inoculate the fruit with fruit-fly-type bacteria were unlikely to be sexually immature, but to be mature as a result of having earlier acquired protein elsewhere; the odour of colonies of fruit-fly-type bacteria when associated with host fruit attracted protein-hungry but not protein-fed females; and the odour of the fruit itself attracted mature females (especially experienced ones) but not immature females.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In male tephritid fruit flies of the genus Bactrocera, feeding on secondary plant compounds (sensu lato male lures = methyl eugenol, raspberry ketone and zingerone) increases male mating success. Ingested male lures alter the male pheromonal blend, normally making it more attractive to females and this is considered the primary mechanism for the enhanced mating success. However, the male lures raspberry ketone and zingerone are known, across a diverse range of other organisms, to be involved in increasing energy metabolism. If this also occurs in Bactrocera, then this may represent an additional benefit to males as courtship is metabolically expensive and lure feeding may increase a fly's short-term energy. We tested this hypothesis by performing comparative RNA-seq analysis between zingerone-fed and unfed males of Bactrocera tryoni. We also carried out behavioural assays with zingerone- and cuelure-fed males to test whether they became more active. RNA-seq analysis revealed, in zingerone-fed flies, up-regulation of 3183 genes with homologues transcripts to those known to regulate intermale aggression, pheromone synthesis, mating and accessory gland proteins, along with significant enrichment of several energy metabolic pathways and gene ontology terms. Behavioural assays show significant increases in locomotor activity, weight reduction and successful mating after mounting; all direct/indirect measures of increased activity. These results suggest that feeding on lures leads to complex physiological changes, which result in more competitive males. These results do not negate the pheromone effect, but do strongly suggest that the phytochemical-induced sexual selection is governed by both female preference and male competitive mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In tephritid fruit flies of the genus Bactrocera Macquart, a group of plant derived compounds (sensu amplo ‘male lures’) enhance the mating success of males that have consumed them. For flies responding to the male lure methyl eugenol, this is due to the accumulation of chemicals derived from the male lure in the male rectal gland (site of pheromone synthesis) and the subsequent release of an attractive pheromone. Cuelure, raspberry ketone and zingerone are a second, related group of male lures to which many Bactrocera species respond. Raspberry ketone and cuelure are both known to accumulate in the rectal gland of males as raspberry ketone, but it is not known if the emitted male pheromone is subsequently altered in complexity or is more attractive to females. Using Bactrocera tryoni as our test insect, and cuelure and zingerone as our test chemicals, we assess: (i) lure accumulation in the rectal gland; (ii) if the lures are released exclusively in association with the male pheromone; and (iii) if the pheromone of lure-fed males is more attractive to females than the pheromone of lure-unfed males. As previously documented, we found cuelure was stored in its hydroxyl form of raspberry ketone, while zingerone was stored largely in an unaltered state. Small but consistent amounts of raspberry ketone and β-(4-hydroxy-3-methoxyphenyl)-propionic acid were also detected in zingerone-fed flies. Males released the ingested lures or their analogues, along with endogenous pheromone chemicals, only during the dusk courtship period. More females responded to squashed rectal glands extracted from flies fed on cuelure than to glands from control flies, while more females responded to the pheromone of calling cuelure-fed males than to control males. The response to zingerone treatments in both cases was not different from the control. The results show that male B. tryoni release ingested lures as part of their pheromone blend and, at least for cuelure, this attracts more females.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coffee is considered the primary host of the Mediterranean fruit fly Ceratitis capitata (Wiedemann). The infestation of C. capitata in the State of São Paulo has reached economic importance in coffee plantations. Although little information about changes caused by the fly on the coffee beverage, it is known that the fruit fly infestation causes rapid change from cherry to raisin stage, causing qualitative damage on the parchment coffee production. The objective of this work was to study the population dynamics and diversity of Tephritidae and Lonchaeidae in coffee cultivars of Icatu Vermelho IAC 4045, Vermelho IAC 99, Novo Mundo 388-17-1, Obatã IAC 1669-20, Icatu Amarelo IAC 2944, grafted on Apoatã (IAC 2258) (Coffea canephora) and Icatu Vermelho IAC 4045 ungrafted and Apoatã (IAC 2258)-grafted with approximately 3 years. The experiment was conducted in Presidente Prudente, São Paulo State, Brazil, from June 2006 to July 2008. The experimental design was a randomized block with four replications in a factorial design (3 years X 6 cultivars). From each plot of 100 plants we randomly collected 250 mature fruits. The samples were taken at 15 day intervals. The population dynamics were evaluated by using one plastic McPhail trap per cultivar. After 26 months a total of 36,932 specimens of C. capitata were trapped in all cultivars, corresponding to 49.27% males and 50.73% females. Approximately 83.3% of the specimens were collected from January to December 2007. The population fluctuation showed population peaks in May, June and July, relative to fruit ripening period. We trapped 21 specimens of A. montei Lima and A. fraterculus (Wied.). The coffee fruits of Presidente Prudente, SP, are infested by the following species of Lonchaeidae: Neosilba pendula (Bezzi), N. zadolicha McAlpine & Steyskal, N. inesperata Strikis & Prado and Neosilba pradoi Strikis & Lerena. Neosilba pendula occurred in all evaluated cultivars and N. inesperata was recoverd only from Icatu Amarelo IAC 2944 and IAC Icatu Vermelho 4045/un-grafted. No Anastrepha specimen was recovered from the fruits. Cultivars did not differ due to tephritid and lonchaeid infestations, but in 2008 the highest infestation by C. capitata occurred in the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the organisms acting in the natural biological control of tephritids, members of the family Braconidae are the most active form of natural parasite, and in Neotropical regions, members of Opiinae are the main control agents of Anastrepha. The objective of this work was to discover the percentage of parasitism and the species of braconid associated with fruit trees growing in cities on the southern coast of Bahia. During the period of August, 2005 to March, 2008, hosts fruits of fruit flies from several plant species were collected and from the fruits the following species of Anastrepha were obtained: A. fraterculus, A. obliqua, A. bahiensis, A. serpentina, A. sororcula and A. zenildae. Of the total of 838 specimens of braconids, 21.36% were of the species Utetes anastrephae (Viereck), obtained from yellow mombin, carambola, guava, mango and pitanga; 4.42% were of the species Asobara anastrephae (Muesebeck) obtained from the fruits of the yellow mombin, carambola and guava, and only one example of Opius bellus Gahan (0.12%) that came from a guava sample. The species Doryctobracon areolatus (Szepligeti) (74.10%) was predominant and emerged from puparia from all the host fruits collected, probably due to the greater efficiency of this species in locating tephritid larvae. The mean percentage of parasitism by Anastrepha spp. was 4.45%.