931 resultados para tellurite glass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to have a better understanding of the role of the structure and the defects involved in the polarization processes in an 85TeO(2)-15Na(2)O mol% glass, we used the thermally stimulated depolarization currents (TSDC technique). The TSDC of the non-irradiated sample presented a strong negative peak of current at the temperature of 340 K, preceded by a relatively weak positive peak at about 300 K. after different d.c. voltages of 1200, 1500 and 2000 V were applied. No response was obtained with 1000 V. but the peak intensity increased considerably for voltages above 1200 V. After gamma-irradiation of 25 and 50 KGy doses, a depolarization of the negative peak was observed in the sample submitted to 25 KGy, whereas for the sample irradiated with 50 KGy, six TSDC peaks appeared at regular intervals of 5 KGy, in the temperature range of 100 and 300 K. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical spectroscopic properties of Tm3+-doped 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) glass are reported. The absorption spectra were obtained and radiative parameters were determined using the Judd-Ofelt theory. Characteristics of excited states were studied in two sets of experiments. Excitation at 360 nm originates a relatively narrow band emission at 450 nm attributed to transition D-1(2)-->F-3(4) of the Tm3+ ion with photon energy larger than the band-gap energy of the glass matrix. Excitation at 655 nm originates a frequency upconverted emission at 450 nm (D-1(2)-->F-3(4)) and emission at 790 nm (H-3(4)-->H-3(6)). The radiative lifetimes of levels D-1(2) and H-3(4) were measured and the differences between their experimental values and the theoretical predictions are understood as due to the contribution of energy transfer among Tm3+ ions. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared-to-visible frequency upconversion through cooperative energy-transfer and thermal effects in Tb3+/Yb3+-codoped tellurite glasses excited at 1.064 mum is investigated. Bright luminescence emission around 485, 550, 590, 625 and 65 nm, identified as due to the D-5(4) --> F-7(J) (J= 6, 5, 4, 3, and 2) transitions of the terbium ions, respectively, was recorded. The excitation of the D-5(4) emitting level of the Tb3+ ions is assigned to cooperative energy-transfer from pairs of ytterbium ions.. The effect of temperature on the upconversion process was examined and the results revealed a fourfold upconversion enhancement in the 300-500 K interval. The enhancement of the upconversion process is due to the temperature dependence of the Yb3+-sensitizer absorption cross-section under anti-Stokes excitation. A rate-equation. model using multiphonon-assisted absorption for the ytterbium excitation combined with the energy migration effect between Yb-Yb pair, and Tb3+ ground-state depopulation via multiphonon excitation of the F-7(J) excited states describes quite well the experimental results. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared-to-visible upconversion luminescence emission in Nd3+-doped 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) tellurite glasses under cw excitation around 800 nm is investigated. Blue (430, and 475 nm), green (5 0 nm) and yellow-orange (590 nm) energy upconversion emission owing to the P-2(1/2) --> I-4(j) (j=9/2, 11/2, 13/2 and 15/2) transitions of the Nd3+ ions, respectively, was recorded. The dependence of the upconversion intensity upon the excitation wavelength and pump power is also studied. The upconversion excitation mechanism responsible for the observed emission signals is attributed to stepwise multiphoton absorption. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated near-infrared-to-blue upconversion from thulium (Tm 3+) doped in tellurite glasses upon continuous wave excitation near 800 nm. We observed an enhancement of over two orders of magnitude of the upconverted emission at ∼480nm when neodymium (Nd 3+) ions were codoped with Tm 3+ ions. For comparison, using a Tm 3+:Nd 3+ codoped fluorozirconate glass as a reference material we observed a 40-fold enhancement of the blue emission. Analysis of the blue emission for samples with different doping levels of Nd 3+ ions showed that energy transfer between Nd 3+ and Tm 3+ is the mechanism responsible for the enhancement in upconversion. © 2002 American Institute of Physics. © 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changing the sample's temperature from 200 K to 535 K, we observed 670-fold enhancement of a phonon-assisted upconversion emission at ≈754 nm obtained from a Nd3+-doped tellurite glass excited by 5 ns laser pulses at 805 nm. A rate-equation model, including the relevant energy levels and temperature dependent transition rates, is proposed to describe the process. The results fit well with the data when one considers the nonradiative transitions contributing for the 754 nm luminescence are promoted by an effective phonon mode with energy of 700 cm-1. © 2013 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relative to the Er3 +:gold-nanoparticle (Er3 +:Au-NP) axis, the polarization of the gold nanoparticle can be longitudinal (electric dipole parallel to the Er3 +:Au-NP axis) or transverse (electric dipole perpendicular to the Er3 +:Au-NP axis). For longitudinal polarization, the plasmon resonance modes of gold nanoparticles embedded in Er3 +-doped germanium-tellurite glass are activated using laser lines at 808 and 488 nm in resonance with radiative transitions of Er3 + ions. The gold nanoparticles were grown within the host glass by thermal annealing over various lengths of time, achieving diameters lower than 1.6 nm. The resonance wavelengths, determined theoretically and experimentally, are 770 and 800 nm. The absorption wavelength of nanoparticles was determined by using the Frohlich condition. Gold nanoparticles provide tunable emission resulting in a large enhancement for the 2H11/2 → 4I13/2 (emission at 805 nm) and 4S 3/2 → 4I13/2 (emission at 840 nm) electronic transitions of Er3 + ions; this is associated with the quantum yield of the energy transfer process. The excitation pathways, up-conversion and luminescence spectra of Er3 + ions are described through simplified energy level diagrams. We observed that up-conversion is favored by the excited-state absorption due to the presence of the gold nanoparticles coupled with the Er3 + ions within the glass matrix. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erbium doped tellurite glasses (TeO2 + Li2O + TiO2) were prepared by conventional melt-quenching method to study the influence of the Er3+ concentration on the luminescence quantum efficiency (η) at 1.5 μm. Absorption and luminescence data were used to characterize the samples, and the η parameter was measured using the well-known thermal lens spectroscopy. For low Er3+ concentration, the measured values are around 76%, and the concentration behavior of η shows Er-Er and Er-OH- interactions, which agreed with the measured lifetime values. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)