879 resultados para teaching environment
Resumo:
The concept, structure and contents of the Internet textbook on classical mechanics intended for Higher Technical Institutions are presented in this work. Aspects of program realization of textbook applications and the technology of elaborating the textbook in the “Hecadem” Internet-teaching environment are given too.
Resumo:
Research in various fields has shown that students benefit from teacher action demonstrations during instruction, establishing the need to better understand the effectiveness of different demonstration types across student proficiency levels. This study centres upon a piano learning and teaching environment in which beginners and intermediate piano students (N=48) learning to perform a specific type of staccato were submitted to three different (group exclusive) teaching conditions: audio-only demonstration of the musical task; observation of the teacher's action demonstration followed by student imitation (blockedobservation); and observation of the teacher's action demonstration whilst alternating imitation of the task with the teacher's performance (interleaved-observation). Learning was measured in relation to students' range of wrist amplitude (RWA) and ratio of sound and inter-sound duration (SIDR) before, during and after training. Observation and imitation of the teacher’s action demonstrations had a beneficial effect on students' staccato knowledge retention at different times after training: students submitted to interleaved-observation presented significantly shorter note duration and larger wrist rotation, and as such, were more proficient at the learned technique in each of the lesson and retention tests than students in the other learning conditions. There were no significant differences in performance or retention for students of different proficiency levels. These findings have relevant implications for instrumental music pedagogy and other contexts where embodied action is an essential aspect of the learning process.
Resumo:
A popularidade das séries televisivas que abordam as Ciências Forenses (CSI 1 Mentes Criminosas, Casos Arquivados...) permite construir actividades que envolvem os alunos numa exploração científica de modo a que dominem os conceitos e apreciem a natureza da Ciência. Estes recursos educativos aplicam uma abordagem Ciência Tecnologia-Sociedade -Pensamento Crítico (CTS-PC) e podem ser explorados segundo uma metodologia de Aprendizagem Baseada na Resolução de Problemas (ABRP). Neste trabalho são propostas actividades laboratoriais, a decorrer no contexto formal das aulas da disciplina de Física e Química A (FQ·A), utilizando sensores e a calculadora gráfica. Num contexto não-formal, e baseadas nas técnicas analíticas utilizadas em Ciências Forenses, foram desenvolvidas actividades para um Clube de Ciência ou Laboratórios Abertos, complementadas por um blogue (CSI-Mafra). Estes recursos foram posteriormente partilhados com outros professores de Física e Química, numa acção de formação, proposta pela autora, e cujo objectivo principal foi a diversificação das estratégias de ensino e aprendizagem. O entusiasmo dos alunos na realização das tarefas propostas e os resultados nos questionários de grau de satisfação e de opinião, aplicados a alunos e professores, sugere que as actividades desenvolvidas podem contribuir na motivação dos alunos para o estudo da Física e da Química e promover a literacia científica da comunidade escolar. ABSTRACT; The high popularity between teenagers of the television series that have Forensic Sciences and Criminal lnvestigations as central theme, such as CSI, Dexter, Criminal Minds and Cold Case, can be used to develop learning activities that involves the students into a scientific exploration which aim is leading the students to learn Chemistry and Physics with pleasure, motivation and curiosity. The educational resources developed in this thesis make use of the strategy Science-Technology-Society-Critical Thinking (STS-CP) and can be exploited according the teaching methodology Problem Based Learning (PBL). ln this work we propose a number of laboratory activities that can be used on the classes of the High School course Physic and Chemistry A (FQ-A) and a different set of activities to be used in a non-formal teaching environment, which are based on the analytical techniques used in Forensic Sciences. The non-formal activities were developed as part of the activities of a Science Club and complemented with an interactive blog. The teaching resources developed by us were also used in a professional training course to physics and chemistry teachers aimed to teach how to introduce new teaching learning strategies. The enthusiasm of the students shown during the activities and the extremely positive results of the questionnaires, applied to students and teachers after the activities, clearly indicates that the learning resources developed in this thesis contribute to the student's motivation to learn Physic and Chemistry and to promote the scientific Iiteracy of the scholar community.
Resumo:
Universities must motivate future professionals so that they are able to apply their experience over and beyond the scientific and technological context. These professionals should also be trained so that they are aware of the current position as regards the economy and limited energy resources, and they must be creative, knowledgeable and committed if they are to rethink the current model.The Departments of Architectural Technology II and Applied Physics, in collaboration with the Interdisciplinary Centre of Technology, Innovation and Education for Sustainability (CITIES), believed that students could be given the opportunity to specialise in the area of sustainable development by means of their final theses [2]. With this objective in mind, a line of theses called Energy Assessments was created as part of the Plan for Resource Consumption Efficiency (PECR). The line was based on a learning strategy that focused on the student.The teaching staff was able to observe that, in terms of cognitive aspects, the students improved their knowledge of environmental issues and the associated skills, and that they were more able to solve problems in the area of sustainability and had greater concerns about this subject matter after having completed their theses.
Resumo:
This paper attempts to shed light on the competencies a teacher must have inorder to teach in online university environments. We will relate a teacher trainingexperience, which was designed taking into account the methodological criteriaestablished in line with previous theoretical principles. The main objective of ouranalysis is to identify the achievements and difficulties of a specific formativeexperience, with the ultimate goal of assessing the suitability of this conceptualmethodologicalframework for the design of formative proposals aiming to contribute tothe development of teacher competencies for virtual environments.
Resumo:
The introduction of computer and communications technology, and particularly the internet, into education has opened up some new possibilities for teaching and learning. Courses designed and delivered in an online environment offer the possibility of highly interactive and individually focussed teaching and learning experiences. However, online courses also present new challenges for both teachers and students. A qualitative study was conducted to explore teachers' perceptions about the similarities and differences in teaching in the online and face-to-face (F2F) environments. Focus group discussions were held with 5 teachers; 2 teachers were interviewed in depth. The participants, 3 female and 2 male, were full-time teachers from a large College of Applied Arts & Technology in southern Ontario. Each of them had over 10 years of F2F teaching experience and each had been involved in the development and teaching of at least one online course. i - -; The study focussed on how teaching in the online environment compares with teaching in the F2F environment, what roles teachers and students adopt in each setting, what learning communities mean online and F2F and how they are developed, and how institutional policies, procedures, and infrastructure affect teaching and learning F2F and online. This study was emic in nature, that is the teachers' words determine the themes identified throughout the study. The factors identified as affecting teaching in an online environment included teacher issues such as course design, motivation to teach online, teaching style, role, characteristics or skills, and strategies. Student issues as perceived by the teachers included learning styles, role, and characteristics or skills. As well, technology issues such as a reliable infrastructure, clear role and responsibilities for maintaining the infrastructure, support, and multimedia capability affected teaching online. Finally, administrative policies and procedures, including teacher selection and training, registration and scheduling procedures, intellectual property and workload policies, and the development and communication of a comprehensive strategic plan were found to impact on teaching online. The teachers shared some of the benefits they perceived about teaching online as well as some of the challenges they had faced and challenges they perceived students had faced online. Overall, the teachers feh that there were more similarities than differences in teaching between the two environments, with the main differences being the change from F2F verbal interactions involving body language to online written interactions without body language cues, and the fundamental reliance on technology in the online environment. These findings support previous research in online teaching and learning, and add teachers' perspectives on the factors that stay the same and the factors that change when moving from a F2F environment to an online environment.
Resumo:
The purpose of this presentation is to offer a deeper understanding of adult learning and provide tips on how to effectively teach in the online environment. The presenter will compare and contrast two learning theories: andragogy and pedagogy. Furthermore, the roles of the online instructor and e-learner will be outlined. An open discussion at the end of the presentation will allow participants to make implications as to which learning theory is more effective for online learning.
Resumo:
This paper aims at describing an educational system for teaching and learning robotic systems. Multimedia resources were used to construct a virtual laboratory where users are able to use functionalities of a virtual robotic arm, by moving and clicking the mouse without caring about the detailed internal robot operation. Moreover through the multimedia system the user can interact with a real robot arm. The engineering students are the target public of the developed system. With its contents and interactive capabilities, it has been used as a support to the traditional face-to-face classes on the subject of robotics.. In the paper it is first introduced the metaphor of Virtual Laboratory used in the system. Next, it is described the Graphical and Multimedia Environment approach: an interactive graphic user interface with a 3D environment for simulation. Design and implementation issues of the real-time interactive multimedia learning system, which supports the W3C SMIL standard for presenting the real-time multimedia teaching material, are described. Finally, some preliminary conclusions and possible future works from this research are presented.
Resumo:
This paper describes the development of a multimedia educational system to teach and learn robotic systems. Multimedia resources have been used to build a virtual laboratory where users are able to utilize functions of a robotic arm, by moving and clicking the mouse without worrying about the detailed robot internal operation. The multimedia system is integrated with a real robotic arm, which was also developed at the university. Through robotic topic presentations and interactive capabilities provided by this system and its tools, students can devote themselves on the learning process just as they do in the traditional face-to-face classes. and the target public of this system are the engineering students themselves.
Resumo:
Using robots for teaching is one approach that has gathered good results on Middle-School, High-School and Universities. Robotics gives chance to experiment concepts of a broad range of disciplines, principally those from Engineering courses and Computer Science. However, there are not many kits that enables the use of robotics in classroom. This article describes the methodologies to implement tools which serves as test beds for the use of robotics to teach Computer Science and Engineering. Therefore, it proposes the development of a flexible, low cost hardware to integrate sensors and control actuators commonly found on mobile robots, the development of a mobile robot device whose sensors and actuators allows the experimentation of different concepts, and an environment for the implementation of control algorithms through a computer network. This paper describes each one of these tools and discusses the implementation issues and future works. © 2010 IEEE.
Resumo:
This paper describes a 3D virtual lab environment that was developed using OpenSim software integrated into Moodle. Virtuald software tool was used to provide pedagogical support to the lab by enabling to create online texts and delivering them to the students. The courses taught in this virtual lab are methodologically in conformity to theory of multiple intelligences. Some results are presented.
Resumo:
“Women of color from any culture or country face additional barriers in predominantly white institutions. This panel presents perspectives and experiences of three women from three cultures and three different levels of academia—a Chicana Latino visiting professor, a graduate teaching assistant from India, and a Sudanese graduate research assistant.”