988 resultados para tea tree oil


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhipicephalus australis (formerly Boophilus microplus) is a one host tick responsible for major economic loss in tropical and subtropical cattle production enterprises. Control is largely dependent on the application of acaricides but resistance has developed to most currently registered chemical groups. Repellent compounds that prevent initial attachment of tick larvae offer a potential alternative to control with chemical toxicants. The repellent effects of Melaleuca alternifolia oil (TTO) emulsions and two β-cyclodextrin complex formulations, a slow release form (SR) and a modified faster release form (FR), were examined in a series of laboratory studies. Emulsions containing 4% and 5% TTO applied to cattle hair in laboratory studies completely repelled ascending tick larvae for 24 h whereas 2% and 3% formulations provided 80% protection. At 48 h, 5% TTO provided 78% repellency but lower concentrations repelled less than 60% of larvae. In a study conducted over 15 days, 3% TTO emulsion applied to cattle hair provided close to 100% repellency for 2 days, but then protection fell to 23% by day 15. The FR formulation gave significantly greater repellency than the emulsion and the SR formulation from day 3 until the end of the study (P < 0.05), providing almost complete repellency at day 3 (99.5%), then decreasing over the period of the study to 49% repellency at day 15. Proof of concept is established for the use of appropriately designed controlled-release formulations to extend the period of repellency provided by TTO against R. australis larvae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vivo pediculicidal effectiveness of 1% and 2% formulations of tea tree (Melaleuca alternifolia) oil (TTO) against sheep chewing lice (Bovicola ovis) was tested in two pen studies. Immersion dipping of sheep shorn two weeks before treatment in both 1% and 2% formulations reduced lice to non detectable levels. No lice were found on any of the treated sheep despite careful inspection of at least 40 fleece partings per animal at 2, 6, 12 and 20 weeks after treatment. In the untreated sheep louse numbers increased from a mean (+/- SE) of 2.4 (+/- 0.7) per 10 cm fleece part at 2 weeks to 12.3 (+/- 4.2) per part at 20 weeks. Treatment of sheep with 6 months wool by jetting (high pressure spraying into the fleece) reduced louse numbers by 94% in comparison to controls at two weeks after treatment with both 1% and 2% TTO formulations. At 6 and 12 weeks after treatment reductions were 94% and 91% respectively with the 1% formulation and 78% and 84% respectively with the 2% formulation. TTO treatment also appeared to reduce wool damage in infested sheep. Laboratory studies indicated that tea tree oil 'stripped' from solution with a progressive reduction in concentration as well as volume as more wool was dipped, indicating that reinforcement of active ingredient would be required to maintain effectiveness when large numbers of sheep are treated. The results of these studies suggest significant potential for the development of ovine lousicides incorporating TTO. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fourty-two White Leghorns laying hens, from the commercial Cuban hybrid L-33, were used for eight weeks during the laying peak (36 to 43 weeks of age), to assess the substitution of corn by cassava root meal (Manihot esculenta Crantz) and the crude soybean oil by crude oil of African palm tree (Elaeis guineensis J.) in the diets of laying hens. Analysis of variance was conducted, according to simple classification design, with three treatments and 14 repetitions (a cage with a hen). The treatments consisted of three diets (1- corn meal + soybean oil; 2- 25 % cassava meal + African palm tree oil; 3- 53 % cassava meal + African palm tree oil), with 15.71 % CP; 3.83 % Ca and 0.36 % P available. The viability was of 100 % in all treatments. No differences were found for laying (92.21, 92.09 and 91.59 %), which surpassed the potential of this hybrid during the laying peak (90 %), conversion (118g feedstuff/egg in the three treatments), egg mass produced (3066, 3114 and 3071 g/bird) and mass conversion (1.99, 1.95 y 1.98 feed consumed/egg mass). The pigmentation of the egg yolk was reduced as the level of cassava meal increased in the diets (6, 4 and 3 at Roche's scale), as well as the cost of the feed consumed in 56 d per hen (2.56, 2.15 and 1.83 USD/bird). The possibility of substituting, totally, corn meal by that of cassava and soybean oil by that of the African palm tree in the diets of laying hens during the laying peak was determined, with positive economic effect and without damaging the productive performance of birds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nanometer scale surface topography of a solid substrate is known to influence the extent of bacterial attachment and their subsequent proliferation to form biofilms. As an extension of our previous work on the development of a novel organic polymer coating for the prevention of growth of medically significant bacteria on three-dimensional solid surfaces, this study examines the effect of surface coating on the adhesion and proliferation tendencies of Staphylococcus aureus and compares to those previously investigated tendencies of Pseudomonas aeruginosa on similar coatings. Radio frequency plasma enhanced chemical vapor deposition was used to coat the surface of the substrate with thin film of terpinen-4-ol, a constituent of tea-tree oil known to inhibit the growth of a broad range of bacteria. The presence of the coating decreased the substrate surface roughness from approximately 2.1 nm to 0.4 nm. Similar to P. aeruginosa, S. aureus presented notably different patterns of attachment in response to the presence of the surface film, where the amount of attachment, extracellular polymeric substance production, and cell proliferation on the coated surface was found to be greatly reduced compared to that obtained on the unmodified surface. This work suggests that the antimicrobial and antifouling coating used in this study could be effectively integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This RIRDC publication reports the findings and recommendations of the RIRDC funded study, "Fabrication of Electronic Materials from Australian Essential Oils". This project was undertaken to facilitate an expansion of the Australian Essential Oils Industry through the development of novel applications in the Electronic and Bio-Materials Industries. The findings presented in this report will provide value broadly across the Australian Essential Oils Industry, and more particularly to the growers involved in the production of tea tree, lavender and other essential oils. Several essential oils, namely tea tree oil, sandalwood oil, eucalyptus oil, alpha-pinene, d-limonene, lavender oil (a separate PhD project) and five major components of tea tree oil were tested. With the exception of sandalwood oil, all oils investigated were successfully polymerised. Importantly, this project determined that it is possible to use an environmentally friendly, inexpensive process of polymerisation to fabricate materials from essential oils in a reproducible manner with properties required by the optics, electronics, protective coatings, and bio-material industries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the synthesis and characterization of a novel organic polymer coating for the prevention of the growth of Pseudomonas aeruginosa on the solid surface of three-dimensional objects. Substrata were encapsulated with polyterpenol thin films prepared from terpinen-4-ol using radio frequency plasma enhanced chemical vapor deposition. Terpinen-4-ol is a constituent of tea tree oil with known antibacterial properties. The influence of deposition power on the chemical structure, surface composition, and ultimately the antibacterial inhibitory activity of the resulting polyterpenol thin films was studied using X-ray photoelectron spectroscopy (XPS), water contact angle measurement, atomic force microscopy (AFM), and 3-D interactive visualization and statistical approximation of the topographic profiles. The experimental results were consistent with those predicted by molecular simulations. The extent of bacterial attachment and extracellular polymeric substances (EPS) production was analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Polyterpenol films deposited at lower power were particularly effective against P. aeruginosa due to the preservation of original terpinen-4-ol molecules in the film structure. The proposed antimicrobial and antifouling coating can be potentially integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Candida-associated denture stomatitis is a frequent infectious disease. Treatment of this oral condition is difficult because failures and recurrences are common. The aim of this study was to test the in vitro antifungal activity of pure constituents of essentials oils. -- Methods: Eight terpenic derivatives (carvacrol, farnesol, geraniol, linalool, menthol, menthone, terpinen-4-ol, and aterpineol), a phenylpropanoid (eugenol), a phenethyl alcohol (tyrosol) and fluconazole were evaluated against 38 Candida isolated from denture-wearers and 10 collection Candida strains by the CLSI M27-A3 broth microdilution method. -- Results: Almost all the tested compounds showed antifungal activity with MIC ranges of 0.03-0.25% for eugenol and linalool, 0.03-0.12% for geraniol, 0.06-0.5% for menthol, a-terpineol and terpinen-4-ol, 0.03-0.5% for carvacrol, and 0.06-4% for menthone. These compounds, with the exception of farnesol, menthone and tyrosol, showed important in vitro activities against the fluconazole-resistant and susceptible-dose dependent Candida isolates. -- Conclusions: Carvacrol, eugenol, geraniol, linalool and terpinen-4-ol were very active in vitro against oral Candida isolates. Their fungistatic and fungicidal activities might convert them into promising alternatives for the topic treatment of oral candidiasis and denture stomatitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE:
This study aimed to investigate antimicrobial treatment of an infected cochlear implant, undertaken in an attempt to salvage the infected device.

METHODS:
We used the broth microdilution method to assess the susceptibility of meticillin-sensitive Staphylococcus aureus isolate, cultured from an infected cochlear implant, to common antimicrobial agents as well as to novel agents such as tea tree oil. To better simulate in vivo conditions, where bacteria grow as microcolonies encased in glycocalyx, the bactericidal activity of selected antimicrobial agents against the isolate growing in biofilm were also compared.

RESULTS:
When grown planktonically, the S aureus isolate was susceptible to 17 of the 18 antimicrobials tested. However, when grown in biofilm, it was resistant to all conventional antimicrobials. In contrast, 5 per cent tea tree oil completely eradicated the biofilm following exposure for 1 hour.

CONCLUSION:
Treatment of infected cochlear implants with novel agents such as tea tree oil could significantly improve salvage outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This proposed thesis is entitled “Plasma Polymerised Organic Thin Films: A study on the Structural, Electrical, and Nonlinear Optical Properties for Possible Applications. Polymers and polymer based materials find enormous applications in the realm of electronics and optoelectronics. They are employed as both active and passive components in making various devices. Enormous research activities are going on in this area for the last three decades or so, and many useful contributions are made quite accidentally. Conducting polymers is such a discovery, and eversince the discovery of conducting polyacetylene, a new branch of science itself has emerged in the form of synthetic metals. Conducting polymers are useful materials for many applications like polymer displays, high density data storage, polymer FETs, polymer LEDs, photo voltaic devices and electrochemical cells. With the emergence of molecular electronics and its potential in finding useful applications, organic thin films are receiving an unusual attention by scientists and engineers alike. This is evident from the vast literature pertaining to this field appearing in various journals. Recently, computer aided design of organic molecules have added further impetus to the ongoing research activities in this area. Polymers, especially, conducting polymers can be prepared both in the bulk and in the thinfilm form. However, many applications necessitate that they are grown in the thin film form either as free standing or on appropriate substrates. As far as their bulk counterparts are concerned, they can be prepared by various polymerisation techniques such as chemical routes and electrochemical means. A survey of the literature reveals that polymers like polyaniline, polypyrrole, polythiophene, have been investigated with a view to studying their structural electrical and optical properties. Among the various alternate techniques employed for the preparation of polymer thin films, the method of plasma polymerisation needs special attention in this context. The technique of plasma polymerisation is an inexpensive method and often requires very less infra structure. This method includes the employment of ac, rf, dc, microwave and pulsed sources. They produce pinhole free homogeneous films on appropriate substrates under controlled conditions. In conventional plasma polymerisation set up, the monomer is fed into an evacuated chamber and an ac/rf/dc/ w/pulsed discharge is created which enables the monomer species to dissociate, leading to the formation of polymer thin films. However, it has been found that the structure and hence the properties exhibited by plasma polymerized thin films are quite different from that of their counterparts produced by other thin film preparation techniques such as electrochemical deposition or spin coating. The properties of these thin films can be tuned only if the interrelationship between the structure and other properties are understood from a fundamental point of view. So very often, a through evaluation of the various properties is a pre-requisite for tailoring the properties of the thin films for applications. It has been found that conjugation is a necessary condition for enhancing the conductivity of polymer thin films. RF technique of plasma polymerisation is an excellent tool to induce conjugation and this modifies the electrical properties too. Both oxidative and reductive doping can be employed to modify the electrical properties of the polymer thin films for various applications. This is where organic thin films based on polymers scored over inorganic thin films, where in large area devices can be fabricated with organic semiconductors which is difficult to achieve by inorganic materials. For such applications, a variety of polymers have been synthesized such as polyaniline, polythiophene, polypyrrole etc. There are newer polymers added to this family every now and then. There are many virgin areas where plasma polymers are yet to make a foray namely low-k dielectrics or as potential nonlinear optical materials such as optical limiters. There are also many materials which are not been prepared by the method of plasma polymerisation. Some of the materials which are not been dealt with are phenyl hydrazine and tea tree oil. The advantage of employing organic extracts like tea tree oil monomers as precursors for making plasma polymers is that there can be value addition to the already existing uses and possibility exists in converting them to electronic grade materials, especially semiconductors and optically active materials for photonic applications. One of the major motivations of this study is to synthesize plasma polymer thin films based on aniline, phenyl hydrazine, pyrrole, tea tree oil and eucalyptus oil by employing both rf and ac plasma polymerisation techniques. This will be carried out with the objective of growing thin films on various substrates such as glass, quartz and indium tin oxide (ITO) coated glass. There are various properties namely structural, electrical, dielectric permittivity, nonlinear optical properties which are to be evaluated to establish the relationship with the structure and the other properties. Special emphasis will be laid in evaluating the optical parameters like refractive index (n), extinction coefficient (k), the real and imaginary components of dielectric constant and the optical transition energies of the polymer thin films from the spectroscopic ellipsometric studies. Apart from evaluating these physical constants, it is also possible to predict whether a material exhibit nonlinear optical properties by ellipsometric investigations. So further studies using open aperture z-scan technique in order to evaluate the nonlinear optical properties of a few selected samples which are potential nonlinear optical materials is another objective of the present study. It will be another endeavour to offer an appropriate explanation for the nonlinear optical properties displayed by these films. Doping of plasma polymers is found to modify both the electrical conductivity and optical properties. Iodine is found to modify the properties of the polymer thin films. However insitu iodine doping is tricky and the film often looses its stability because of the escape of iodine. An appropriate insitu technique of doping will be developed to dope iodine in to the plasma polymerized thin films. Doping of polymer thin films with iodine results in improved and modified optical and electrical properties. However it requires tools like FTIR and UV-Vis-NIR spectroscopy to elucidate the structural and optical modifications imparted to the polymer films. This will be attempted here to establish the role of iodine in the modification of the properties exhibited by the films

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insecticidal potency of some essential oils suggests that they may find an application in the control of house dust mites, but current in vitro assays for mites do not appear to give consistent results. A simple, novel, mite chamber assay was therefore developed to carry out testing. Different species of insects are susceptible to different essential oil components, so we compared the relative acaricidal and pediculicidal activity of three essential oils: tea tree, lavender and lemon, because the activity of their constituents on lice ranges from highly active to virtually inactive. The most effective essential oil against both lice and mites was tea tree oil; lavender was the second most effective, and lemon oil the least, although it did show activity against mites, unlike lice. The assay proved simple and effective and gave reproducible results. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O interesse por medicamentos alternativos, principalmente daqueles provenientes de extratos naturais, tem aumentado nas últimas décadas. A Melaleuca alternifolia é um arbusto pertencente ao gênero Melaleuca, popularmente conhecida como árvore de chá, cujo principal produto é o óleo essencial (TTO - tea tree oil), de grande importância medicinal por possuir comprovada ação bactericida e antifúngica contra diversos patógenos humanos. em virtude da atividade terapêutica em diversas especialidades médicas, o TTO passou a ser empregado na área odontológica. Esta revisão de literatura foi realizada com o objetivo de discutir os ensaios já realizados com o TTO contra microrganismos relacionados à doença cárie, doença periodontal e problemas pulpares. O óleo de Melaleuca tem demonstrado boa ação antibacteriana in vitro contra microrganismos bucais, porém, pesquisas envolvendo o estudo do mecanismo de ação sobre as células microbianas ou estudos in vivo ainda são escassos e precisam ser realizados, já que esse produto pode ser útil na odontologia, seja na manutenção química da higiene ou prevenção de doenças bucais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Reabilitação Oral - FOAR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To compare the efficacy of the mouthwashes 0.12% chlorhexidine, Listerine, and 0.5% and 2% Melaleuca Alternifolia oil against the salivary levels of Streptococcus mutans and total microorganisms. Methods: This study was double-blind controlled and paired clinical assay. Twenty-six volunteers aged 21 to 35 years old were enrolled. At baseline, 1 mL of unstimulated saliva was collected from each subject, 1 and 15 min after mouthrinsing with the following solutions: sterile distilled water, 0.12% chlorhexidine digluconate, Listerine (©Johnson & Johnson do Brasil), 0.5% and 2% concentrations of Melaleuca Alternifolia (Sigma-Aldrich). The volunteers used all the evaluated mouthrinses with a 15-day interval between the solutions. Immediately after rinsing, saliva was collected and serial dilutions were performed, followed by plating in blood agar culture medium for growth of total microorganisms and SB-20 (Sucrose-Bacitracin agar) for growth of S. mutans, and incubation at 37 °C for 48 h in microaerophilia. After incubation, the number of colonies was counted and expressed as colony forming units (UFC/mL). Results: Chlorhexidine showed antimicrobial action by reducing total microorganisms and S. mutans, while the action of 0.5% Melaleuca Alternifolia was similar to that of distilled water. Listerine and 2% Melaleuca Alternifolia oil reduced total microbial counts by 11% and 9% respectively, and S. mutans by 20% and 11%. Conclusion: A single rinse with 0.12% chlorhexidine is effective in reducing the levels of total microorganisms and S. mutans present in saliva. Under the same testing conditions, Listerine and 0.5% and 2% Melaleuca Alternifolia oil presented lower efficacy than chlorhexidine.