949 resultados para sympathetic dystrophy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence demonstrates that sympathetic nervous system (SNS) activation causes osteopenia via beta(2)-adrenoceptor (beta(2)-AR) signaling. Here we show that female mice with chronic sympathetic hyperactivity owing to double knockout of adrenoceptors that negatively regulate norepinephrine release, alpha(2A)-AR and alpha(2C)-AR(alpha(2A)/alpha(2C)-ARKO), present an unexpected and generalized phenotype of high bone mass with decreased bone resorption and increased formation. In alpha(2A)/alpha(2C)-ARKO versus wild-type (WT) mice, micro-computed tomographic (mu CT) analysis showed increased, better connected, and more plate-shaped trabeculae in the femur and vertebra and increased cortical thickness in the vertebra, whereas biomechanical analysis showed increased tibial and femoral strength. Tibial mRNA expression of tartrate-resistant acid phosphatase (TRACP) and receptor activator of NF-kappa B (RANK), which are osteoclast-related factors, was lower in knockout (KO) mice. Plasma leptin and brain mRNA levels of cocaine amphetamine-regulated transcript (CART), which are factors that centrally affect bone turnover, and serum levels of estradiol were similar between mice strains. Tibial beta(2)-AR mRNA expression also was similar in KO and WT littermates, whereas alpha(2A)-, alpha(2B)- and alpha(2C)-AR mRNAs were detected in the tibia of WT mice and in osteoblast-like MC3T3-E1 cells. By immunohistochemistry, we detected alpha(2A)-, alpha(2B)-, alpha(2C)- and beta(2)-ARs in osteoblasts, osteoclasts, and chondrocytes of 18.5-day-old mouse fetuses and 35-day-old mice. Finally, we showed that isolated osteoclasts in culture are responsive to the selective alpha(2)-AR agonist clonidine and to the nonspecific alpha-AR antagonist phentolamine. These findings suggest that beta(2)-AR is not the single adrenoceptor involved in bone turnover regulation and show that alpha(2)-AR signaling also may mediate the SNS actions in the skeleton. (c) 2011 American Society for Bone and Mineral Research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bueno CR Jr, Ferreira JC, Pereira MG, Bacurau AV, Brum PC. Aerobic exercise training improves skeletal muscle function and Ca(2+) handling-related protein expression in sympathetic hyperactivity-induced heart failure. J Appl Physiol 109: 702-709, 2010. First published July 1, 2010; doi: 10.1152/japplphysiol.00281.2010.-The cellular mechanisms of positive effects associated with aerobic exercise training on overall intrinsic skeletal muscle changes in heart failure (HF) remain unclear. We investigated potential Ca(2+) abnormalities in skeletal muscles comprising different fiber compositions and investigated whether aerobic exercise training would improve muscle function in a genetic model of sympathetic hyperactivity-induced HF. A cohort of male 5-mo-old wild-type (WT) and congenic alpha(2A)/alpha(2C) adrenoceptor knockout (ARKO) mice in a C57BL/6J genetic background were randomly assigned into untrained and trained groups. Exercise training consisted of a 8-wk running session of 60 min, 5 days/wk (from 5 to 7 mo of age). After completion of the exercise training protocol, exercise tolerance was determined by graded treadmill exercise test, muscle function test by Rotarod, ambulation and resistance to inclination tests, cardiac function by echocardiography, and Ca(2+) handling-related protein expression by Western blot. alpha(2A)/alpha(2C)ARKO mice displayed decreased ventricular function, exercise intolerance, and muscle weakness paralleled by decreased expression of sarcoplasmic Ca(2+) release-related proteins [alpha(1)-, alpha(2)-, and beta(1)-subunits of dihydropyridine receptor (DHPR) and ryanodine receptor (RyR)] and Ca(2+) reuptake-related proteins [sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) 1/2 and Na(+)/Ca(2+) exchanger (NCX)] in soleus and plantaris. Aerobic exercise training significantly improved exercise tolerance and muscle function and reestablished the expression of proteins involved in sarcoplasmic Ca(2+) handling toward WT levels. We provide evidence that Ca(2+) handling-related protein expression is decreased in this HF model and that exercise training improves skeletal muscle function associated with changes in the net balance of skeletal muscle Ca(2+) handling proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of exercise training (ET) on cardiac renin-angiotensin system (RAS) was investigated in 3-5 month-old mice lacking alpha(2A-) and alpha(2C-)adrenoceptors (alpha(2A)/alpha(2C)ARKO) that present heart failure (HF) and wild type control (WT). ET consisted of 8-week running sessions of 60 min, 5 days/week. In addition, exercise tolerance, cardiac structural and function analysis were made. At 3 months, fractional shortening and exercise tolerance were similar between groups. At 5 months, alpha(2A)/alpha(2C)ARKO mice displayed ventricular dysfunction and fibrosis associated with increased cardiac angiotensin (Ang) II levels (2.9-fold) and increased local angiotensin-converting enzyme activity (ACE 18%). ET decreased alpha(2A)/alpha(2C)ARKO cardiac Ang II levels and ACE activity to age-matched untrained WT mice levels while increased ACE2 expression and prevented exercise intolerance and ventricular dysfunction with little impact on cardiac remodeling. Altogether, these data provide evidence that reduced cardiac RAS explains, at least in part, the beneficial effects of ET on cardiac function in a genetic model of HF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sympathetic hyperactivity (SH) and renin angiotensin system (RAS) activation are commonly associated with heart failure (HF), even though the relative contribution of these factors to the cardiac derangement is less understood. The role of SH on RAS components and its consequences for the HF were investigated in mice lacking alpha(2A) and alpha(2C) adrenoceptor knockout (alpha(2A)/alpha(2C) ARKO) that present SH with evidence of HF by 7 mo of age. Cardiac and systemic RAS components and plasma norepinephrine (PN) levels were evaluated in male adult mice at 3 and 7 mo of age. In addition, cardiac morphometric analysis, collagen content, exercise tolerance, and hemodynamic assessments were made. At 3 mo, alpha(2A)/alpha(2C)ARKO mice showed no signs of HF, while displaying elevated PN, activation of local and systemic RAS components, and increased cardiomyocyte width (16%) compared with wild-type mice (WT). In contrast, at 7 mo, alpha(2A)/alpha(2C)ARKO mice presented clear signs of HF accompanied only by cardiac activation of angiotensinogen and ANG II levels and increased collagen content (twofold). Consistent with this local activation of RAS, 8 wk of ANG II AT(1) receptor blocker treatment restored cardiac structure and function comparable to the WT. Collectively, these data provide direct evidence that cardiac RAS activation plays a major role underlying the structural and functional abnormalities associated with a genetic SH-induced HF in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise training (ET) is a coadjuvant therapy in preventive cardiology. It delays cardiac dysfunction and exercise intolerance in heart failure (HF); however, the molecular mechanisms underlying its cardioprotection are poorly understood. We tested the hypothesis that ET would prevent Ca2+ handling abnormalities and ventricular dysfunction in sympathetic hyperactivity-induced HF mice. A cohort of male wildtype (WT) and congenic (alpha 2A/alpha 2C)-adrenoceptor knockout ((alpha 2A/alpha 2C)ARKO) mice with C57BL6/J genetic background (3-5 mo of age) were randomly assigned into untrained and exercise-trained groups. ET consisted of 8-wk swimming session, 60 min, 5 days/wk. Fractional shortening (FS) was assessed by two-dimensional guided M-mode echocardiography. The protein expression of ryanodine receptor (RyR), phospho-Ser(2809)-RyR, sarcoplasmic reticulum Ca2+ ATPase (SERCA2), Na+/Ca2+ exchanger (NCX), phospholamban (PLN), phospho-Ser(16)-PLN, and phospho-Thr(17)-PLN were analyzed by Western blotting. At 3 mo of age, no significant difference in FS and exercise tolerance was observed between WT and (alpha 2A/alpha 2C)ARKO mice. At 5 mo, when cardiac dysfunction is associated with lung edema and increased plasma norepinephrine levels, (alpha 2A/alpha 2C)ARKO mice presented reduced FS paralleled by decreased SERCA2 (26%) and NCX (34%). Conversely, (alpha 2A/alpha 2C)ARKO mice displayed increased phospho-Ser(16)-PLN (76%) and phospho-Ser(2809)-RyR (49%). ET in (alpha 2A/alpha 2C)ARKO mice prevented exercise intolerance, ventricular dysfunction, and decreased plasma norepinephrine. ET significantly increased the expression of SERCA2 (58%) and phospho-Ser(16)-PLN (30%) while it restored the expression of phospho-Ser(2809)-RyR to WT levels. Collectively, we provide evidence that improved net balance of Ca2+ handling proteins paralleled by a decreased sympathetic activity on ET are, at least in part, compensatory mechanisms against deteriorating ventricular function in HF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Of the various genetic homologues to Duchenne Muscular Dystrophy (DMD), the Golden Retriever Muscular Dystrophy (GRMD) dog, which presents a variable but usually severe and progressive muscle weakness, has the closest relevance to DMD in both clinical severity and histopathological change. Among 77 GRMD dogs born in our colony in Brazil, we have identified a very mildly affected dog, Ringo, born July 2003. Among his descendants, at least one male, Suflair, is also showing a mild course. In an attempt to better characterize these two dogs, we studied the pattern of muscle proteins expression in Ringo and Suflair, as compared to severely affected and normal control dogs. Dystrophin was absent in both and utrophin was overexpressed in a pattern similar to the observed in severely affected dogs. Understanding the mechanism that is protecting Ringo and Suflair from the deleterious effect of the dystrophin gene mutation is of utmost interest, In addition it points out that the clinical impact of therapeutic trials should be interpreted with caution. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is reported for introducing peptides derived from SNARE proteins that control exocytosis of vesicles at boutons formed by sympathetic ganglion cells in tissue culture. These peptides were coupled to the DNA binding domain of the Drosophila transcription factor antennapedia, called penetratin, This facilitated the passage of peptides across the bouton membrane. FMI-43 was used to monitor the exocytosis of transmitter from depolarized boutons after their exposure to the penetratin-peptide sequences IETRHNEIIKLETSIRELHD of syntaxin and KGFLSSLFGGSSK of alpha -SNAP. both of which blocked secretion, whereas the peptide sequences SELDDRA-DALQAGASQFETSAAKLKRK of synaptobrevin did not. This report introduces a readily applicable method for determining the effect of different peptide sequences of vesicle-associated proteins on secretion at vertebrate boutons and presents an account of the effects of a selection of such peptides on exocytosis. NeuroReport 12:607-610 (C) 2001 Lippincott Williams & Wilkins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, beta-blocker therapy has become a primary pharmacologic intervention in patients with heart failure by blocking the sympathetic activity. To compare the exercise training`s sympathetic blockade in healthy subjects (athletes) and the carvedilol`s sympathetic blockade in sedentary heart failure patients by the evaluation of the heart rate dynamic during an exercise test. A total of 26 optimized and 49 nonoptimized heart failure patients in a stable condition (for, at least, 3 months), 15 healthy athletes and 17 sedentary healthy subjects were recruited to perform a cardiopulmonary exercise test. The heart rate dynamic (rest, reserve, peak and the peak heart rate in relation to the maximum predicted for age) was analyzed and compared between the four groups. The heart rate reserve was the same between optimized (48 +/- 15) and nonoptimized (49 +/- 18) heart failure patients (P < 0.0001). The athletes (188 +/- 9) showed a larger heart rate reserve compared to sedentary healthy subjects (92 +/- 10, P < 0.0001). Athletes and healthy sedentary reached the maximum age-predicted heart ratefor their age, but none of the heart failure patients did. The carvedilol`s sympathetic blockade occurred during the rest and during the peak effort in the same proportion, but the exercise training`s sympathetic blockade in healthy subjects occurred mainly in the rest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compared the effects of exercise training on neurovascular control and functional capacity in men and women with chronic heart failure (HF). Forty consecutive HF outpatients from the Heart Institute, University of Sao Paulo, Brazil were divided into the following four groups matched by age: men exercise-trained (n = 12), men untrained (n = 10), women exercise-trained (n = 9), women untrained (n = 9). Maximal exercise capacity was determined from a maximal progressive exercise test on a cycle ergometer. Forearm blood flow was measured by venous occlusion plethysmography. Muscle sympathetic nerve activity (MSNA) was recorded directly using the technique of microneurography. There were no differences between groups in any baseline parameters. Exercise training produced a similar reduction in resting MSNA (P = 0.000002) and forearm vascular resistance (P = 0.0003), in men and women with HF. Peak VO(2) was similarly increased in men and women with HF (P = 0.0003) and VE/VCO(2) slope was significantly decreased in men and women with HF (P = 0.0007). There were no significant changes in left-ventricular ejection fraction in men and women with HF. The benefits of exercise training on neurovascular control and functional capacity in patients with HF are independent of gender.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The progression of heart failure in Chagas` disease has been explained by remodeling, leading to neurohumoral activation, or by the direct parasite damage to parasympathetic neurons during acute phase, leading to early sympathetic activation and progressive heart failure. To help distinguish between these hypotheses we studied muscle sympathetic nerve activity (MSNA) at rest and during handgrip exercise (30% of maximal voluntary contraction) in patients with Chagas` disease and normal ejection fraction vs. patients with heart failure. Methods: A consecutive study of 72 eligible out-patients/subjects was conducted between July 1998 and November 2004. The participants were classified in three advanced heart failure groups (New York Heart Association Functional Classes II-III): Chagas` disease (n-15), ischemic (n=15) and idiopathic cardiomyopathy (n-15). Twelve Chagas` disease patients without heart failure and normal ejection fraction, and 15 normal controls were also studied. MSNA was recorded directly from the peroneal nerve by microneurography technique. Results: MSNA was greater in heart failure patients when compared with Chagas` disease patients without heart failure (51 +/- 3 vs. 20 +/- 2 bursts/min P=0.0001). MSNA in Chagas` patients with normal ejection fraction and normal controls was not different. During exercise, MSNA was similar in all 3 heart failure groups. And, was lower in the Chagas` patients with normal ejection fraction than in patients with Chagas` disease and heart failure (28 +/- 1 vs. 63 +/- 5 bursts/min, respectively). Conclusion: MSNA is not elevated in patients with Chagas` disease with normal ejection fraction. These findings support the concept of remodeling and neurohumoral activation as a common pathway following significant cardiac injury. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Previous studies have associated neurohumoral excitation, as estimated by plasma norepinephrine levels, with increased mortality in heart failure. However, the prognostic value of neurovascular interplay in heart failure (HF) is unknown. We tested the hypothesis that the muscle sympathetic nerve activity (MSNA) and forearm blood flow would predict mortality in chronic heart failure patients. Methods: One hundred and twenty two heart failure patients, NYHA II-IV, age 50 +/- 1 ys, LVEF 33 +/- 1%, and LVDD 7.1 +/- 0.2 mm, were followed up for one year. MSNA was directly measured from the peroneal nerve by microneurography. Forearm blood flow was obtained by venous occlusion plethysmography. The variables were analyzed by using univariate, stepwise multivariate Cox proportional hazards analysis, and Kaplan-Meier analysis. Results: After one year, 34 pts died from cardiac death. The univariate analysis showed that MSNA, forearm blood flow, LVDD, LVEF, and heart rate were significant predictors of mortality. The multivariate analysis showed that only MSNA (P = 0.001) and forearm blood flow (P = 0.003) were significant independent predictors of mortality. On the basis of median levels of MSNA, survival rate was significantly lower in pts with >49 bursts/min. Similarly, survival rate was significantly lower in pts with forearm blood flow <1.87 ml/min/100 ml (P = 0.002). Conclusion: MSNA and forearm blood flow predict mortality rate in patients with heart failure. It remains unknown whether therapies that specifically target these abnormalities will improve survival in heart failure. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM The cognitive deficits present in the Duchenne muscular dystrophy (DMD) are not yet well characterized. Attention, considered to be the brain mechanism responsible for the selection of sensory stimuli, could be disturbed in DMD, contributing, at least partially, to the observed global cognitive deficit. The aim of this study was to investigate attentional function in individuals with DMD. METHOD Twenty-five males (mean age 12y; SD 2y 2mo) with DMD and 25 healthy males (mean age 12y; SD 2y) were tested in a visuospatial task (Posner computerized test). They were instructed to respond as quickly as possible to a lateralized visual target stimulus with the ipsilateral hand. Their attention was automatically orientated by a peripheral prime stimulus or, alternatively, voluntarily orientated by a central spatially informative cue. RESULTS The main result obtained was that the attentional effect (sum of the benefit and the cost of attention) did not differ between the two groups in the case of automatic attention (p=0.846) but was much larger for individuals with DMD than for comparison individuals in the case of voluntary attention (p < 0.001). INTERPRETATION The large voluntary attentional effect exhibited by the participants with DMD seems similar to that of younger children, suggesting that the disease is associated with delayed maturation of voluntary attention mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors developed an evaluation scale for sit-stand from the ground for children with Duchenne muscular dystrophy (DMD) and tested its reliability. The construction occurred in stages: (a) the characterization of the movement in healthy children, (b) the characterization of the movement in children with DMD, (c) the elaboration of the 1st version of the scale and the manual, (d) the evaluation by experts and readjustments, and (e) the analysis of inter- and intraexaminer reliability and correlation with the Vignos Scale, age, and time for the execution of the activity. The scale comprehended 3 phases for sitting and 5 for the standing. A very good repeatability of the measures of sitting and standing (ICC = 0.89 and 0.84, respectively) and excellent reproducibility (ICC = 0.93 and 0.92, respectively) was demonstrated. The Kappa coefficient for the 8 phases in the interexaminer analysis varied from 0.77 to 1.00 (excellent reliability), and in the intraexaminer analysis varied from 0.80 to 1.00 (excellent reliability). Good correlation was found between the variables on the Vignos Scale (age: r = 0.58; stand: r = 0.56). The scale is a reliability instrument that allows evaluation of the activity of sitting and standing in children with DMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ullrich congenital muscular dystrophy (UCMD) is a disabling and life-threatening disorder resulting from either recessive or dominant mutations in genes encoding collagen VI. Although the majority of the recessive UCMD cases have frameshift or nonsense mutations in COL6A1, COL6A2, or COL6A3, recessive structural mutations in the COL6A2 C-globular region are emerging also. However, the underlying molecular mechanisms have remained elusive. Here we identified a homozygous COL6A2 E624K mutation (C1 subdomain) and a homozygous COL6A2 R876S mutation (C2 subdomain) in two UCMD patients. The consequences of the mutations were investigated using fibroblasts from patients and cells stably transfected with the mutant constructs. In contrast to expectations based on the clinical severity of these two patients, secretion and assembly of collagen VI were moderately affected by the E624K mutation but severely impaired by the R876S substitution. The E624K substitution altered the electrostatic potential of the region surrounding the metal ion-dependent adhesion site, resulting in a collagen VI network containing thick fibrils and spots with densely packed microfibrils. The R876S mutation prevented the chain from assembling into triple-helical collagen VI molecules. The minute amount of collagen VI secreted by the R876S fibroblasts was solely composed of a faster migrating chain corresponding to the C2a splice variant with an alternative C2 subdomain. In transfected cells, the C2a splice variant was able to assemble into short microfibrils. Together, the results suggest that the C2a splice variant may functionally compensate for the loss of the normal COL6A2 chain when mutations occur in the C2 subdomain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Sympathetic hyperactivity is one of the mechanisms involved in the increased cardiovascular risk associated with depression, and there is evidence that antidepressants decrease sympathetic activity. Objectives We tested the following two hypotheses: patients with major depressive disorder with high scores of depressive symptoms (HMDD) have augmented muscle sympathetic nervous system activity (MSNA) at rest and during mental stress compared with patients with major depressive disorder with low scores of depressive symptoms (LMDD) and controls; sertraline decreases MSNA in depressed patients. Methods Ten HMDD, nine LMDD and 11 body weight-matched controls were studied. MSNA was directly measured from the peroneal nerve using microneurography for 3 min at rest and 4 min during the Stroop color word test. For the LMDD and HMDD groups, the tests were repeated after treatment with sertraline (103.3 +/- 40 mg). Results Resting MSNA was significantly higher in the HMDD [29.1 bursts/min (SE 2.9)] compared with LMDD [19.9 (1.6)] and controls [22.2 (2.0)] groups (P=0.026 and 0.046, respectively). There was a significant positive correlation between resting MSNA and severity of depression. MSNA increased significantly and similarly during stress in all the studied groups. Sertraline significantly decreased resting MSNA in the LMDD group and MSNA during mental stress in LMDD and HMDD groups. Sertraline significantly decreased resting heart rate and heart rate response to mental stress in the HMDD group. Conclusion Moderate-to-severe depression is associated with increased MSNA. Sertraline treatment reduces MSNA at rest and during mental challenge in depressed patients, which may have prognostic implications in this group. J Hypertens 27:2429-2436 (c) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.