894 resultados para sweet potato
Resumo:
Intervention strategies regarding the biofortification of orange-fleshed sweet potato, which is a rich source of carotenoids for combating vitamin A deficiency, are being developed in Brazil. This study was conducted to evaluate the concentrations of individual carotenoids, total phenolic compounds and antioxidant capacity in the roots of four biofortified sweet potato cultivars that were raw or processed by four common heat treatments. HPLC, Folin-Ciocalteu, DPPH and ABTS assays were used. All cultivars showed high levels of carotenoids in raw roots, predominantly all-trans-beta-carotene (79.1-128.5 mg.100 g(-1) DW), suggesting a high estimated vitamin A activity. The CNPH 1194 cultivar reported carotenoids values highest than those of other cultivars (p < 0.05). The total phenolic compounds varied among cultivars and heat treatments (0.96-2.05 mg.g(-1) DW). In most cases, the heat treatments resulted in a significant decrease in the carotenoids and phenolic compounds contents as well as antioxidant capacity. Processing of flour presented the greatest losses of major carotenoids and phenolics. The phenolic compounds showed more stability than carotenoids after processing. There were significant correlations between the carotenoids and phenolic compounds and the antioxidant capacity.
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Purple acid phosphatases (PAPs) are a family of binuclear metalloenzymes that catalyze the hydrolysis of phosphoric acid esters and anhydrides. A PAP in sweet potato has a unique, strongly antiferromagnetically coupled Fe(III)-Mn(II) center and is distinguished from other PAPs by its increased catalytic efficiency for a range of activated and unactivated phosphate esters, its strict requirement for Mn(II), and the presence of a mu-oxo bridge at pH 4.90. This enzyme displays maximum catalytic efficiency (k(cat)/K-m) at pH 4.5, whereas its catalytic rate constant (k(cat)) is maximal at near-neutral pH, and, in contrast to other PAPs, its catalytic parameters are not dependent on the pK(a) of the leaving group. The crystal structure of the phosphate-bound Fe(III)-Mn(II) PAP has been determined to 2.5-Angstrom resolution (final R-free value of 0.256). Structural comparisons of the active site of sweet potato, red kidney bean, and mammalian PAPs show several amino acid substitutions in the sweet potato enzyme that can account for its increased catalytic efficiency. The phosphate molecule binds in an unusual tripodal mode to the two metal ions, with two of the phosphate oxygen atoms binding to Fe(III) and Mn(II), a third oxygen atom bridging the two metal ions, and the fourth oxygen pointing toward the substrate binding pocket. This binding mode is unique among the known structures in this family but is reminiscent of phosphate binding to urease and of sulfate binding to A protein phosphatase. The structure and kinetics support the hypothesis that the bridging oxygen atom initiates hydrolysis.
Resumo:
allard's introductory chapter reviews the lively debate concerning the introduction of sweet potato into Oceania and its role in debates concerning population growth, population density, and their relationship to agricultural intensification and socio- economic and political change, particularly in New Guinea. Other forms of proxy data include archaeological evidence for cropping and agricultural technology (Coil and Kirch); temporal data indicative of shifts in landscape use and changing agricultural practices (Bayliss-Smith et al.; Haberle and Atkin; Wallin et al.); and data from legends, ethnohistoric documents, and ethnographic studies providing evidence for the timing of the introduction, and the importance of the crop in various Oceanic societies (Allen; Dunis; Wallin et al.).
Resumo:
Alternaria blight (AB) of sweet potato ( Ipomoea batatas L. ), caused by Alternaria spp., was recently reported in South Africa, but is common in southern and eastern Africa. Elsewhere in the world, AB is controlled primarily using resistant varieties. Twenty-five sweet potato varieties/breeding lines, from different origins were assessed for tolerance to AB. The materials were planted in fields having a history of AB disease and rated for tolerance based on a General Disease Index (GDI), with the lowest scores representing tolerance, and the higher scores representing susceptibility. Variety 199062-1 had the lowest GDI value, and was the most tolerant to AB; while W119 had the highest GDI value and was the most susceptible to the disease. Other varieties/breeding lines showed a variation in GDI values between most tolerant and most susceptible. Among the fungicides tested under field conditions, the mixture azoxystrobin-difenoconazole was the most effective in reducing AB intensity. Fungicides pyraclostrobin-boscalid, unizeb, azoxystrobin-chlorothalonil and cymoxanil-mancozeb were also effective against the disease.
Resumo:
In Zimbabwe, the average sweet potato yield (6 t/ha) is relatively low when compared to Asian counterparts (17 t/ha). These low crop yields have been blamed on weevil infestations and viral infections which account for 60-90% of sweet potato yield losses in Africa. Meristem tip culture, a Centre for Potato Improvement (CIP) initiated tissue culture technique, has been widely used to eradicate viruses from clonally propagated crops and has been noted to be one of the instrumental techniques that helped China to increase sweet potato yields. In an effort to adopt the meristem tip culture technique for the production of virus-free planting material of a local sweet potato (cv Brondal), a study was conducted to evaluate the effect of Benzylamino purine (BAP), 1-Naphthaleneacetic acid (NAA) and Gibberellic acid (GA3) (either alone or in combination) on cultured Brondal meristems. The different hormonal treatments were assessed on the following parameters: plantlet regenerative capacity, multiple plantlet production, shoot height, average leaf number per shoot and average node number per shoot, ten weeks after meristem culture. All treatments containing a combination of BAP (1 mg-L) and GA3 (at either 5 mg-L, 10 mg-L, or 20 mg-L) had a significantly (p<0.01) higher plantlet regenerative capacity of 33-66% when compared to other treatment combinations. Only treatments, 10 mg-L GA3 + 1 mg-L BAP and 20 mg-L GA3 + 1 mg-L BAP were capable of inducing multiple plantlet formation, producing an average of three plantlets/meristem and two plantlets/meristem respectively. Overall, treatment 10 mg-L GA3 + 1 mg-L BAP gave rise to significantly (p<0.01) taller shoots (20 mm) compared to the rest of the treatments used. For average leaf number per shoot, all GA3 treatments (5 mg-L, 10 mg-L, or 20 mg-L) supplemented with 1 mg-L BAP gave significantly (p<0.01) higher numbers of leaves (six leaves/shoot) than the rest of the treatments. Treatments 10 mg-L GA3 + 1 mg-L BAP and 20 mg-L GA3 + 1 mg-L BAP gave rise to the highest number of nodes per shoot, producing an average of three nodes per shoot. In sharp contrast to treatments containing a combination of BAP and GA3, all treatments containing a combination of BAP and NAA performed poorly in all parameters tested for plant regeneration of Brondal sweet potato variety. In conclusion, the best hormonal treatment for culturing Brondal meristems proved to be 10 mg-L GA3 + 1 mg-L BAP.
Resumo:
The root knot nematode (RKN), Meloidogyne incognita, is widespread worldwide and a major pathogen of several cultivated crops. The use of resistant genotypes is the most effective and environmentally sound way to manage RKN. In this study, we screened 16 selected sweet potato cultivars including Amanda, Bárbara, Beatriz, Beauregard, Brazlândia Branca, Brazlândia Rosada, Brazlândia Roxa, BRS Amélia, BRS Cuia, BRS Rubissol, Carolina Vitória, Duda, Júlia, Marcela, PA-26/2009, and Princesa obtained from Embrapa and Universidade Federal do Tocantins? germplasm bank. Studies were conducted under greenhouse and field conditions and the agronomic performance of the cultivars was evaluated in a nematode and soilborne insect-infested field. All 16 sweet potato cultivars tested were rated as resistant to this nematode both under greenhouse and field conditions with reproduction factors < 1. In the field infested with M. incognita, sweet potato cultivars Duda, BRS Amélia, Beauregard, Brazlândia Rosada, and Brazlândia Roxa stood out as superior cultivars, with average yield ranging from 26 to 47 tons per ha. Overall, most cultivars exhibited a fusiform to near fusiform root shape, a good characteristic for the market, and were moderately affected by insects (attack incidence 1 to 30%). As global demand for energy continues to rise, selecting new cultivars of sweet potatoes with increased resistance to nematode diseases and with high yield will be important for food security and biofuel production.
Experimental and modeling studies of forced convection storage and drying systems for sweet potatoes
Resumo:
Sweet potato is an important strategic agricultural crop grown in many countries around the world. The roots and aerial vine components of the crop are used for both human consumption and, to some extent as a cheap source of animal feed. In spite of its economic value and growing contribution to health and nutrition, harvested sweet potato roots and aerial vine components has limited shelf-life and is easily susceptible to post-harvest losses. Although post-harvest losses of both sweet potato roots and aerial vine components is significant, there is no information available that will support the design and development of appropriate storage and preservation systems. In this context, the present study was initiated to improve scientific knowledge about sweet potato post-harvest handling. Additionally, the study also seeks to develop a PV ventilated mud storehouse for storage of sweet potato roots under tropical conditions. In study one, airflow resistance of sweet potato aerial vine components was investigated. The influence of different operating parameters such as airflow rate, moisture content and bulk depth at different levels on airflow resistance was analyzed. All the operating parameters were observed to have significant (P < 0.01) effect on airflow resistance. Prediction models were developed and were found to adequately describe the experimental pressure drop data. In study two, the resistance of airflow through unwashed and clean sweet potato roots was investigated. The effect of sweet potato roots shape factor, surface roughness, orientation to airflow, and presence of soil fraction on airflow resistance was also assessed. The pressure drop through unwashed and clean sweet potato roots was observed to increase with higher airflow, bed depth, root grade composition, and presence of soil fraction. The physical properties of the roots were incorporated into a modified Ergun model and compared with a modified Shedd’s model. The modified Ergun model provided the best fit to the experimental data when compared with the modified Shedd’s model. In study three, the effect of sweet potato root size (medium and large), different air velocity and temperature on the cooling/or heating rate and time of individual sweet potato roots were investigated. Also, a simulation model which is based on the fundamental solution of the transient equations was proposed for estimating the cooling and heating time at the centre of sweet potato roots. The results showed that increasing air velocity during cooling and heating significantly (P < 0.05) affects the cooling and heating times. Furthermore, the cooling and heating times were significantly different (P < 0.05) among medium and large size sweet potato roots. Comparison of the simulation results with experimental data confirmed that the transient simulation model can be used to accurately estimate the cooling and heating times of whole sweet potato roots under forced convection conditions. In study four, the performance of charcoal evaporative cooling pad configurations for integration into sweet potato roots storage systems was investigated. The experiments were carried out at different levels of air velocity, water flow rates, and three pad configurations: single layer pad (SLP), double layers pad (DLP) and triple layers pad (TLP) made out of small and large size charcoal particles. The results showed that higher air velocity has tremendous effect on pressure drop. Increasing the water flow rate above the range tested had no practical benefits in terms of cooling. It was observed that DLP and TLD configurations with larger wet surface area for both types of pads provided high cooling efficiencies. In study five, CFD technique in the ANSYS Fluent software was used to simulate airflow distribution in a low-cost mud storehouse. By theoretically investigating different geometries of air inlet, plenum chamber, and outlet as well as its placement using ANSYS Fluent software, an acceptable geometry with uniform air distribution was selected and constructed. Experimental measurements validated the selected design. In study six, the performance of the developed PV ventilated system was investigated. Field measurements showed satisfactory results of the directly coupled PV ventilated system. Furthermore, the option of integrating a low-cost evaporative cooling system into the mud storage structure was also investigated. The results showed a reduction of ambient temperature inside the mud storehouse while relative humidity was enhanced. The ability of the developed storage system to provide and maintain airflow, temperature and relative humidity which are the key parameters for shelf-life extension of sweet potato roots highlight its ability to reduce post-harvest losses at the farmer level, particularly under tropical climate conditions.
Resumo:
The family Geminiviridae comprises a group of plant-infecting circular ssDNA viruses that severely constrain agricultural production throughout the temperate regions of the world, and are a particularly serious threat to food security in sub-Saharan Africa. While geminiviruses exhibit considerable diversity in terms of their nucleotide sequences, genome structures, host ranges and insect vectors, the best characterised and economically most important of these viruses are those in the genus Begomovirus. Whereas begomoviruses are generally considered to be either monopartite (one ssDNA component) or bipartite (two circular ssDNA components called DNA-A and DNA-B), many apparently monopartite begomoviruses are associated with additional subviral ssDNA satellite components, called alpha- (DNA-αs) or betasatellites (DNA-βs). Additionally, subgenomic molecules, also known as defective interfering (DIs) DNAs that are usually derived from the parent helper virus through deletions of parts of its genome, are also associated with bipartite and monopartite begomoviruses. The past three decades have witnessed the emergence and diversification of various new begomoviral species and associated DI DNAs, in southern Africa, East Africa, and proximal Indian Ocean islands, which today threaten important vegetable and commercial crops such as, tobacco, cassava, tomato, sweet potato, and beans. This review aims to describe what is known about these viruses and their impacts on sustainable production in this sensitive region of the world. © 2012 by the authors licensee MDPI, Basel, Switzerland.