998 resultados para surgical simulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endoscopic approaches for anterior correction of idiopathic scoliosis are a relatively new surgical technique. This paper describes the development of patient-specific finite element modelling techniques to investigate the biomechanics of single rod anterior scoliosis correction. Spinal geometry is obtained from pre-operative CT scans and material properties for osteo-ligamentous spinal tissues are based on existing literature. The techniques being developed will allow pre-surgical prediction of stresses, forces and deformations in spinal tissues, rods and screws under post-operative physiological loads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wound debridement refers to the removal of necrotic, devitalized, or contaminated tissue and/or foreign material to promote wound healing. Surgical debridement uses sharp instruments to cut dead tissue from a wound and it is the quickest and most efficient method of debridement. A wound debridement simulator [1,2] can ensure that a medical trainee is competent prior to performing a procedure on a genuine patient. Irrigation is performed at different stages of debridement in order to remove debris and reduce the bacteria count through rinsing the wound. This paper presents a novel approach for realistic irrigation visualization based on texture representations of debris. This approach applies image processing techniques to a series of images, which model the cleanliness of the wound. The active texture is generated and updated dynamically based on the irrigation state, location, and range. Presented results demonstrate that texture mapping and image processing techniques can provide effective and efficient solutions for irrigation visualization in the wound debridement simulator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomedical engineering solutions like surgical simulators need High Performance Computing (HPC) to achieve real-time performance. Graphics Processing Units (GPUs) offer HPC capabilities at low cost and low power consumption. In this work, it is demonstrated that a liver which is discretized by about 2500 finite element nodes, can be graphically simulated in realtime, by making use of a GPU. Present work takes into consideration the time needed for the data transfer from CPU to GPU and back from GPU to CPU. Although behaviour of liver is very complicated, present computer simulation assumes linear elastostatics. One needs to use the commercial software ANSYS to obtain the global stiffness matrix of the liver. Results show that GPUs are useful for the real-time graphical simulation of liver, which in turn is needed in simulators that are used for training surgeons in laparoscopic surgery. Although the computer simulation should involve rendering also, neither rendering, nor the time needed for rendering and displaying the liver on a screen, is considered in the present work. The present work is just a demonstration of a concept; the concept is not really implemented and validated. Future work is to develop software which can accomplish real-time and very realistic graphical simulation of liver, with rendered image of liver on the screen changing in real-time according to the position of the surgical tool tip approximated as the mouse cursor in 3D.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Realistic and realtime computational simulation of soft biological organs (e.g., liver, kidney) is necessary when one tries to build a quality surgical simulator that can simulate surgical procedures involving these organs. Since the realistic simulation of these soft biological organs should account for both nonlinear material behavior and large deformation, achieving realistic simulations in realtime using continuum mechanics based numerical techniques necessitates the use of a supercomputer or a high end computer cluster which are costly. Hence there is a need to employ soft computing techniques like Support Vector Machines (SVMs) which can do function approximation, and hence could achieve physically realistic simulations in realtime by making use of just a desktop computer. Present work tries to simulate a pig liver in realtime. Liver is assumed to be homogeneous, isotropic, and hyperelastic. Hyperelastic material constants are taken from the literature. An SVM is employed to achieve realistic simulations in realtime, using just a desktop computer. The code for the SVM is obtained from [1]. The SVM is trained using the dataset generated by performing hyperelastic analyses on the liver geometry, using the commercial finite element software package ANSYS. The methodology followed in the present work closely follows the one followed in [2] except that [2] uses Artificial Neural Networks (ANNs) while the present work uses SVMs to achieve realistic simulations in realtime. Results indicate the speed and accuracy that is obtained by employing the SVM for the targeted realistic and realtime simulation of the liver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noninvasive or minimally invasive identification of sentinel lymph node (SLN) is essential to reduce the surgical effects of SLN biopsy. Photoacoustic (PA) imaging of SLN in animal models has shown its promise for clinical use in the future. Here, we present a Monte Carlo simulation for light transport in the SLN for various light delivery configurations with a clinical ultrasound probe. Our simulation assumes a realistic tissue layer model and also can handle the transmission/reflectance at SLN-tissue boundary due to the mismatch of refractive index. Various light incidence angles show that for deeply situated SLNs the maximum absorption of light in the SLN is for normal incidence. We also show that if a part of the diffused reflected photons is reflected back into the skin using a reflector, the absorption of light in the SLN can be increased significantly to enhance the PA signal. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Key content
- Trainees face many challenges in learning the skill set required to perform laparoscopic surgery.
- The time spent in the operating room has been detrimentally impacted upon since the implementation of the European Working Time Directive. In order to address the deficit, surgical educators have looked to the benefits enjoyed in the aviation and sports industries in using simulation training.

Learning objectives
- To summarise the current understanding of the neuropsychological basis of learning a psychomotor skill.
- To clarify factors that influence the acquisition of these skills.
- To summarise how this information can be used in teaching and assessment of laparoscopic skills.

Ethical issues
- The use of virtual reality simulators may be able to form a part of the aptitude assessment in the selection process, in order to identify trainees with the desired attributes to progress into the training programmes. However, as skill improves with practice, is it ethical to exclude novices with poor initial performance assessment before allowing them the opportunities to improve?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Persistence of external trunk asymmetry after scoliosis surgical treatment is frequent and difficult to predict by clinicians. This is a significant problem considering that correction of the apparent deformity is a major factor of satisfaction for the patients. A simulation of the correction on the external appearance would allow the clinician to illustrate to the patient the potential result of the surgery and would help in deciding on a surgical strategy that could most improve his/her appearance. We describe a method to predict the scoliotic trunk shape after a spine surgical intervention. The capability of our method was evaluated using real data of scoliotic patients. Results of the qualitative evaluation were very promising and a quantitative evaluation based on the comparison of the simulated and the actual postoperative trunk surface showed an adequate accuracy for clinical assessment. The required short simulation time also makes our approach an eligible candidate for a clinical environment demanding interactive simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Techniques of rapid prototyping were introduced in the 1980s in the field of engineering for the fabrication of a solid model based on a computed file. After its introduction in the biomedical field, several applications were raised for the fabrication of models to ease surgical planning and simulation in implantology, neurosurgery, and orthopedics, as well as for the fabrication of maxillofacial prostheses. Hence, the literature has described the evolution of rapid prototyping technique in health care, which allowed easier technique, improved surgical results, and fabrication of maxillofacial prostheses. Accordingly, a literature review on MEDLINE ( PubMed) database was conducted using the keywords rapid prototyping, surgical planning, and maxillofacial prostheses and based on articles published from 1981 to 2010. After reading the titles and abstracts of the articles, 50 studies were selected owing to their correlations with the aim of the current study. Several studies show that the prototypes have been used in different dental-medical areas such as maxillofacial and craniofacial surgery; implantology; neurosurgery; orthopedics; scaffolds of ceramic, polymeric, and metallic materials; and fabrication of personalized maxillofacial prostheses. Therefore, prototyping has been an indispensable tool in several studies and helpful for surgical planning and fabrication of prostheses and implants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this PhD thesis " Simulation Guided Navigation in cranio- maxillo- facial surgery : a new approach to Improve intraoperative three-dimensional accuracy and reproducibility during surgery ." was at the center of its attention the various applications of a method introduced by our School in 2010 and has as its theme the increase of interest of reproducibility of surgical programs through methods that in whole or in part are using intraoperative navigation. It was introduced in Orthognathic Surgery Validation a new method for the interventions carried out according to the method Simulation Guided Navigation in facial deformities ; was then analyzed the method of three-dimensional control of the osteotomies through the use of templates and cutting of plates using the method precontoured CAD -CAM and laser sintering . It was finally proceeded to introduce the method of piezonavigated surgery in the various branches of maxillofacial surgery . These studies have been subjected to validation processes and the results are presented .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computerized soft-tissue simulation can provide unprecedented means for predicting facial outlook pre-operatively. Surgeons can virtually perform several surgical plans to have the best surgical results for their patients while considering corresponding soft-tissue outcome. It could be used as an interactive communication tool with their patients as well. There has been comprehensive amount of works for simulating soft-tissue for cranio-maxillofacial surgery. Although some of them have been realized as commercial products, none of them has been fully integrated into clinical practice due to the lack of accuracy and excessive amount of processing time. In this chapter, state-of-the-art and general workflow in facial soft-tissue simulation will be presented, along with an example of patient-specific facial soft-tissue simulation method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20\% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we show the use of three-dimensional printing models for preoperative planning of transcatheter valve replacement in a patient with an extreme porcelain aorta. A 70-year-old man with severe aortic stenosis and a porcelain aorta was referred to our center for transcatheter aortic valve replacement. Unfortunately, the patient died after the procedure because of a potential ischemic event. Therefore, we decided to fabricate three-dimensional models to evaluate the potential effects of these constructs for previous surgical planning and simulation of the transcatheter valve replacement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Microvascular anastomosis is the cornerstone of free tissue transfers. Irrespective of the microsurgical technique that one seeks to integrate or improve, the time commitment in the laboratory is significant. After extensive previous training on several animal models, we sought to identify an animal model that circumvents the following issues: ethical rules, cost, time-consuming and expensive anesthesia, and surgical preparation of tissues required to access vessels before performing the microsurgical training, not to mention that laboratories are closed on weekends. METHODS Between January 2012 and April 2012, a total of 91 earthworms were used for 150 microsurgical training exercises to simulate vascular end-to-side microanastomosis. The training sessions were divided into ten periods of 7 days. Each training session included 15 simulations of end-to-side vascular microanastomoses: larger than 1.5 mm (n=5), between 1.0 and 1.5 mm (n=5), and smaller than 1.0 mm (n=5). A linear model with the main variables being the number of weeks (as a numerical covariate) and the size of the animal (as a factor) was used to determine the trend in time of anastomosis over subsequent weeks as well as the differences between the different size groups. RESULTS The linear model shows a significant trend (p<0.001) in time of anastomosis in the course of the training, as well as significant differences (p<0.001) between the groups of animals of different sizes. For microanastomoses larger than 1.5 mm, the mean anastomosis time decreased from 19.3±1.0 to 11.1±0.4 min between the first and last week of training (decrease of 42.5%). For training with smaller diameters, the results showed a decrease in execution time of 43.2% (diameter between 1.0 and 1.5 mm) and 40.9% (diameter<1.0 mm) between the first and last periods. The study demonstrates an improvement in the dexterity and speed of nodes execution. CONCLUSION The earthworm appears to be a reliable experimental model for microsurgical training of end-to-side microanastomoses. Its numerous advantages are discussed here and we predict training on earthworms will significantly grow and develop in the near future. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .