982 resultados para surface temperature


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] Evaporative fraction (EF) is a measure of the amount of available energy at the earth surface that is partitioned into latent heat flux. The currently operational thermal sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) on satellite platforms provide data only at 1000 m, which constraints the spatial resolution of EF estimates. A simple model (disaggregation of evaporative fraction (DEFrac)) based on the observed relationship between EF and the normalized difference vegetation index is proposed to spatially disaggregate EF. The DEFrac model was tested with EF estimated from the triangle method using 113 clear sky data sets from the MODIS sensor aboard Terra and Aqua satellites. Validation was done using the data at four micrometeorological tower sites across varied agro-climatic zones possessing different land cover conditions in India using Bowen ratio energy balance method. The root-mean-square error (RMSE) of EF estimated at 1000 m resolution using the triangle method was 0.09 for all the four sites put together. The RMSE of DEFrac disaggregated EF was 0.09 for 250 m resolution. Two models of input disaggregation were also tried with thermal data sharpened using two thermal sharpening models DisTrad and TsHARP. The RMSE of disaggregated EF was 0.14 for both the input disaggregation models for 250 m resolution. Moreover, spatial analysis of disaggregation was performed using Landsat-7 (Enhanced Thematic Mapper) ETM+ data over four grids in India for contrasted seasons. It was observed that the DEFrac model performed better than the input disaggregation models under cropped conditions while they were marginally similar under non-cropped conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface energy processes has an essential role in urban weather, climate and hydrosphere cycles, as well in urban heat redistribution. The research was undertaken to analyze the potential of Landsat and MODIS data in retrieving biophysical parameters in estimating land surface temperature & heat fluxes diurnally in summer and winter seasons of years 2000 and 2010 and understanding its effect on anthropogenic heat disturbance over Delhi and surrounding region. Results show that during years 2000-2010, settlement and industrial area increased from 5.66 to 11.74% and 4.92 to 11.87% respectively which in turn has direct effect on land surface temperature (LST) and heat fluxes including anthropogenic heat flux. Based on the energy balance model for land surface, a method to estimate the increase in anthropogenic heat flux (Has) has been proposed. The settlement and industrial areas has higher amounts of energy consumed and has high values of Has in all seasons. The comparison of satellite derived LST with that of field measured values show that Landsat estimated values are in close agreement within error of 2 degrees C than MODIS with an error of 3 degrees C. It was observed that, during 2000 and 2010, the average change in surface temperature using Landsat over settlement & industrial areas of both seasons is 1.4 degrees C & for MODIS data is 3.7 degrees C. The seasonal average change in anthropogenic heat flux (Has) estimated using Landsat & MODIS is up by around 38 W/m(2) and 62 W/m(2) respectively while higher change is observed over settlement and concrete structures. The study reveals that the dynamic range of Has values has increased in the 10 year period due to the strong anthropogenic influence over the area. The study showed that anthropogenic heat flux is an indicator of the strength of urban heat island effect, and can be used to quantify the magnitude of the urban heat island effect. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diurnal cycle is an important mode of sea surface temperature (SST) variability in tropical oceans, influencing air-sea interaction and climate variability. Upper ocean mixing mechanisms are significant at diurnal time scales controlling the intraseasonal variability (ISV) of SST. Sensitivity experiments using an Ocean General Circulation Model (OGCM) for the summer monsoon of the year 2007 show that incorporation of diurnal cycle in the model atmospheric forcings improves the SST simulation at both intraseasonal and shorter time scales in the Bay of Bengal (BoB). The increase in SST-ISV amplitudes with diurnal forcing is approximate to 0.05 degrees C in the southern bay while it is approximate to 0.02 degrees C in the northern bay. Increased intraseasonal warming with diurnal forcing results from the increase in mixed layer heat gain from insolation, due to shoaling of the daytime mixed layer. Amplified intraseasonal cooling is dominantly controlled by the strengthening of subsurface processes owing to the nocturnal deepening of mixed layer. In the southern bay, intraseasonal variability is mainly determined by the diurnal cycle in insolation, while in the northern bay, diurnal cycle in insolation and winds have comparable contributions. Temperature inversions (TI) develop in the northern bay in the absence of diurnal variability in wind stress. In the northern bay, SST-ISV amplification is not as large as that in the southern bay due to the weaker diurnal variability of mixed layer depth (MLD) limited by salinity stratification. Diurnal variability of model MLD is not sufficient to create large modifications in mixed layer heat budget and SST-ISV in the northern bay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land surface temperature (LST) is an important variable in climate, hydrologic, ecological, biophysical and biochemical studies (Mildrexler et al., 2011). The most effective way to obtain LST measurements is through satellites. Presently, LST from moderate resolution imaging spectroradiometer (MODIS) sensor is applied in various fields due to its high spatial and temporal availability over the globe, but quite difficult to provide observations in cloudy conditions. This study evolves of prediction of LST under clear and cloudy conditions using microwave vegetation indices (MVIs), elevation, latitude, longitude and Julian day as inputs employing an artificial neural network (ANN) model. MVIs can be obtained even under cloudy condition, since microwave radiation has an ability to penetrate through clouds. In this study LST and MVIs data of the year 2010 for the Cauvery basin on a daily basis were obtained from MODIS and advanced microwave scanning radiometer (AMSR-E) sensors of aqua satellite respectively. Separate ANN models were trained and tested for the grid cells for which both LST and MVI were available. The performance of the models was evaluated based on standard evaluation measures. The best performing model was used to predict LST where MVIs were available. Results revealed that predictions of LST using ANN are in good agreement with the observed values. The ANN approach presented in this study promises to be useful for predicting LST using satellite observations even in cloudy conditions. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combination of remotely sensed gappy Sea surface temperature (SST) images with the missing data filling DINEOF (data interpolating empirical orthogonal functions) technique, followed by a principal component analysis of the reconstructed data, has been used to identify the time evolution and the daily scale variability of the wintertime surface signal of the Iberian Poleward Current (IPC), or Navidad, during the 1981-2010 period. An exhaustive comparison with the existing bibliography, and the vertical temperature and salinity profiles related to its extremes over the Bay of Biscay area, show that the obtained time series accurately reflect the IPC-Navidad variability. Once a time series for the evolution of the SST signal of the current over the last decades is well established, this time series is used to propose a physical mechanism in relation to the variability of the IPC-Navidad, involving both atmospheric and oceanic variables. According to the proposed mechanism, an atmospheric circulation anomaly observed in both the 500 hPa and the surface levels generates atmospheric surface level pressure, wind-stress and heat-flux anomalies. In turn, those surface level atmospheric anomalies induce mutually coherent SST and sea level anomalies over the North Atlantic area, and locally, in the Bay of Biscay area. These anomalies, both locally over the Bay of Biscay area and over the North Atlantic, are in agreement with several mechanisms that have separately been related to the variability of the IPC-Navidad, i.e. the south-westerly winds, the joint effect of baroclinicity and relief (JEBAR) effect, the topographic beta effect and a weakened North Atlantic gyre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ENGLISH: Isograms of sea surface temperature (OC) have been produced for 1949-1968 for the areas of the eastern Pacific Ocean in which the majority of the skipjack catch is taken. These are in the immediate coastal zone, California (35° N) to Chile (20 0 S), and the Revillagigedo and Galapagos Islands groups. Skipjack occurrence and apparent abundance (as CSDF, i.e., catch per standard days fishing, standardized in purse-seiner units) for 1951-1968 were then superimposed on the surface temperature isograms. Results show that skipjack occur at surface temperatures> 17° C but with the majority between 20°-30° C. Apparent abundance at CSDF > 1 ton/day is normally Iimited to 20°29° C water, except in two areas in certain years; from the Gulf of Tehuantepec to Cape Mala rates of 1-9 tons/day are relatively common at 29°-30° C, and off Chimbote (Peru) occasionally >9 tons/day are recorded down to 18° C. As expected there were no apparent relationships between annual thermal conditions in the coastal zone and skipjack abundance (total catch or indices of abundance) in the same or 2 subsequent years. An Appendix to the report determines the quantitative relationships between surface temperature and skipjack abundance in relatively small areal strata in Baja California waters in 1955 and 1958. Relationships generally appeared significant and opposite in these years when temperatures were respectively anomalously cold and warm. SPANISH: Se han producido isogramas de la temperatura de la superficie del mar (OC) para 1949-1968 correspondientes a las áreas del Océano Pacífico oriental en donde se obtiene la mayor parte de la captura de barrilete. Estas se encuentran ubicadas en la zona costanera inmediata, desde California (35°N) hasta Chile (200S) y en las Islas Revillagigedo y Galápagos. La ocurrencia de barrilete y su abundancia aparente (expresada como CDSP standardizada en unidades de cerqueros) para 1951-1968 fueron luego superpuestas en los isogramas de la temperatura superficial. Los resultados demuestran que el barrilete aparece en temperaturas superficiales de > 17°C pero la mayoría entre los 20°C-30°C. La abundancia aparente de la CDSP > 1 tonelada/día se limita normalmente a aguas de 20°-29°C, excepto en dos áreas en ciertos años; desde el Golfo de Tehuantepec a Cabo Mala las tasas de 1-9 toneladas/día son relativamente comunes en los 29°-30°C, y frente a Chimbote (Perú) se registran ocasionalmente> 9 toneladas/día a una temperatura tan fría como de 18°C. Como era de esperarse no existió una relación aparente entre las condiciones térmicas anuales de la zona costanera y la abundancia del barrilete (captura total o índices de abundancia) en el mismo año o en los 2 años siguientes. Un Apéndice del informe determina la relación cuantitativa entre la temperatura superficial y la abundancia del barrilete en un estrato de áreas relativamente pequeño en las aguas de Baja California en 1955 y 1968. Las relaciones generalmente aparecieron significativas y opuestas en esos años cuando las temperaturas fueron respectivamente anómalamente frías y calientes. (PDF contains 53 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Daily sea surface temperatures have been acquired at the Hopkins Marine Station in Pacific Grove, California since January 20, 1919.This time series is one of the longest oceanographic records along the U.S. west coast. Because of its length it is well-suited for studying climate-related and oceanic variability on interannual, decadal, and interdecadal time scales. The record, however, is not homogeneous, has numerous gaps, contains possible outliers, and the observations were not always collected at the same time each day. Because of these problems we have undertaken the task of reconstructing this long and unique series. We describe the steps that were taken and the methods that were used in this reconstruction. Although the methods employed are basic, we believe that they are consistent with the quality of the data. The reconstructed record has values at every time point, original, or estimated, and has been adjusted for time-of-day variations where this information was available. Possible outliers have also been examined and replaced where their credibility could not be established. Many of the studies that have employed the Hopkins time series have not discussed the issue of data quality and how these problems were addressed. Because of growing interest in this record, it is important that a single, well-documented version be adopted, so that the results of future analyses can be directly compared. Although additional work may be done to further improve the quality of this record, it is now available via the internet. [PDF contains 48 pages]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data recovered from 11 popup satellite archival tags and 3 surgically implanted archival tags were used to analyze the movement patterns of juvenile northern bluefin tuna (Thunnus thynnus orientalis) in the eastern Pacific. The light sensors on archival and pop-up satellite transmitting archival tags (PSATs) provide data on the time of sunrise and sunset, allowing the calculation of an approximate geographic position of the animal. Light-based estimates of longitude are relatively robust but latitude estimates are prone to large degrees of error, particularly near the times of the equinoxes and when the tag is at low latitudes. Estimating latitude remains a problem for researchers using light-based geolocation algorithms and it has been suggested that sea surface temperature data from satellites may be a useful tool for refining latitude estimates. Tag data from bluefin tuna were subjected to a newly developed algorithm, called “PSAT Tracker,” which automatically matches sea surface temperature data from the tags with sea surface temperatures recorded by satellites. The results of this algorithm compared favorably to the estimates of latitude calculated with the lightbased algorithms and allowed for estimation of fish positions during times of the year when the lightbased algorithms failed. Three near one-year tracks produced by PSAT tracker showed that the fish range from the California−Oregon border to southern Baja California, Mexico, and that the majority of time is spent off the coast of central Baja Mexico. A seasonal movement pattern was evident; the fish spend winter and spring off central Baja California, and summer through fall is spent moving northward to Oregon and returning to Baja California.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): An analysis of the principal components of surface temperature and precipitation in the western U.S. is presented. Data consist of monthly mean temperature and total precipitation for 66 climate divisions west of the Continental Divide, for the years 1931-1984. The analysis is repeated for three separate combinations of months - the water year (Oct - Sept), the cool season (Oct - Mar) and the warm season (Apr - Sept). Inspection of monthly precipitation climatology indicates that selection of these combinations of months results in very few awkward splittings of the natural precipitation seasons found in the West.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous consideration of the relationship between climate and the survival rate of Pacific salmon eggs and fry has been confined to effects of large variation in the ambient freshwater environment; e.g., stream discharge, temperature, turbidity. This analysis shows sea surface temperatures during the last year of life of maturing adult salmon are also strongly associated with the subsequent survival rate of salmon eggs and fry is fresh water, presumably through development of the future eggs or sperm. In several stocks of three species of North American salmon, the association between the "marine" climate and egg survival is stronger than, or additive to, any estimated climatic association in fresh water. This apparent and surprising link between fresh water and the distant ocean has some interesting and complex implications for management of future salmon production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As sea turtles migrate along the Atlantic coast of the USA, their incidental capture in fisheries is a significant source of mortality. Because distribution of marine cheloniid turtles appears to be related, in part, to sea surface temperature (SST), the ability to predict water temperature over the continental shelf could be useful in minimizing turtle–fishery interactions. We analyzed 10 yr of advanced very high resolution radiometer (AVHRR) SST imagery to estimate the proportion of 18 spatial zones, nearshore and offshore of Hatteras, North Carolina, USA (35° N), to north of Cape Sable, Nova Scotia (44° N), at temperatures >10 to 15°C, by week. Detailed examples for 11°C, the temperature employed by some management actions in the study area, and for 14°C, the lowest temperature at which turtles were sighted by some studies in the area, demonstrate a predictable pattern of rapid warming in March and April, followed by rapid cooling in October and November, with nearshore waters warming more rapidly than those offshore. Of those loggerhead turtles Caretta caretta that stranded, were sighted, or were incidentally captured between Cape Hatteras, North Carolina, and Cape Cod, Massachusetts, those at lower latitudes occurred when 25% or more of the area reached a water temperature of 11°C, while those in the northern zones did not occur until 50% or more of the area had reached a water temperature of 14°C. This analysis provides a means of predicting marine cheloniid turtle presence, which can be helpful in regulating fisheries that seasonally interact with turtles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Annual mean fork length (FL) of the Pacific stock of chub mackerel (Scomber japonicus) was examined for the period of 1970–97. Fork length at age 0 (6 months old) was negatively correlated with year-class strength which fluctuated between 0.2 and 14 billion in number for age-0 fish. Total stock biomass was correlated with FL at age but was not a significant factor. Sea surface temperature (SST) between 38–40°N and 141–143°E during April–June was also negatively correlated with FL at age 0. A modified von Bertalanffy growth model that incorporated the effects of population density and SST on growth was well fitted to the observed FL at ages. The relative FL at age 0 for any given year class was maintained throughout the life span. The variability in size at age in the Pacific stock of chub mackerel is largely attributable to growth during the first six months after hatching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pacific sea surface temperatures (SSTs) are examined for their associations with (1) summer rainfall, and (2) the latitude location of the mid-tropospheric subtropical high pressure ridge (STR) in the southwestern United States during 1945 to 1986. Extreme northward (southward) displacements of STR are associated with wet (dry) summers over Arizona and an enhanced (weakened) gradient of SST off the California and Baja coasts. These tend to follow winters marked by positive (negative) phases of the PNA, Pacific/North America, teleconnection pattern. Recent decadal variations of Arizona summer rainfall (1950s wet; 1970s dry) appear similarly related to southwestern United States synoptic circulation and eastern Pacific SSTs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Like pages of a "natural coastal diary", successive layers of anoxic varved sediment in the central Santa Barbara Basin have been used by paleoceanographers to reconstruct aspects of past coastal climate. This report focuses on the end of the "Little Ice Age" (15th to 19th century) and on the beginning of this century, a period known to encompass extreme climate excursions and weather events in the Santa Barbara Basin and other parts of Southern California. El Niño events are known to disrupt Southern California's coastal ecosystems and to cause anomalous weather conditions, but El Niño events in Southern California before 1990 have been largely undocumented.