996 resultados para surface runoff


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Surface runoff and sediment production from different timber yarding practices, some using Best Management Practices (BMPs) recommended for Honduras, were monitored in experimental plots during the rainy seasons of two consecutive years in pine forest highlands of central Honduras. Different timber yarding systems were applied to pseudo-replicated plots during the rainy seasons of 1999 and 2000. In 1999, two treatments were studied: tractor yarding and skyline cable (a recommended BMP). In 2000, four treatments were evaluated: tractor skidding, skyline cable, animal skidding (another recommended BMP), and undisturbed forest (reference). During the rainy seasons of these years, surface runoff volumes and sediment yield were measured at five 1.5m x 10m erosion plots in each treated area. The results showed significant differences between traditional tractor yarding and the recommended skyline cable and animal skidding methods. Tractor yarding produced six to ten times more erosion during the rainy seasons than cable and animal yarding. The improved soil retention of cable and animal yarding was especially important during September when the highest rainfall occurred in this climate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Surface Urban Energy and Water Balance Scheme (SUEWS) is developed to include snow. The processes addressed include accumulation of snow on the different urban surface types: snow albedo and density aging, snow melting and re-freezing of meltwater. Individual model parameters are assessed and independently evaluated using long-term observations in the two cold climate cities of Helsinki and Montreal. Eddy covariance sensible and latent heat fluxes and snow depth observations are available for two sites in Montreal and one in Helsinki. Surface runoff from two catchments (24 and 45 ha) in Helsinki and snow properties (albedo and density) from two sites in Montreal are also analysed. As multiple observation sites with different land-cover characteristics are available in both cities, model development is conducted independent of evaluation. The developed model simulates snowmelt related runoff well (within 19% and 3% for the two catchments in Helsinki when there is snow on the ground), with the springtime peak estimated correctly. However, the observed runoff peaks tend to be smoother than the simulated ones, likely due to the water holding capacity of the catchments and the missing time lag between the catchment and the observation point in the model. For all three sites the model simulates the timing of the snow accumulation and melt events well, but underestimates the total snow depth by 18–20% in Helsinki and 29–33% in Montreal. The model is able to reproduce the diurnal pattern of net radiation and turbulent fluxes of sensible and latent heat during cold snow, melting snow and snow-free periods. The largest model uncertainties are related to the timing of the melting period and the parameterization of the snowmelt. The results show that the enhanced model can simulate correctly the exchange of energy and water in cold climate cities at sites with varying surface cover.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

While the simulation of flood risks originating from the overtopping of river banks is well covered within continuously evaluated programs to improve flood protection measures, flash flooding is not. Flash floods are triggered by short, local thunderstorm cells with high precipitation intensities. Small catchments have short response times and flow paths and convective thunder cells may result in potential flooding of endangered settlements. Assessing local flooding and pathways of flood requires a detailed hydraulic simulation of the surface runoff. Hydrological models usually do not incorporate surface runoff at this detailedness but rather empirical equations are applied for runoff detention. In return 2D hydrodynamic models usually do not allow distributed rainfall as input nor are any types of soil/surface interaction implemented as in hydrological models. Considering several cases of local flash flooding during the last years the issue emerged for practical reasons but as well as research topics to closing the model gap between distributed rainfall and distributed runoff formation. Therefore, a 2D hydrodynamic model, depth-averaged flow equations using the finite volume discretization, was extended to accept direct rainfall enabling to simulate the associated runoff formation. The model itself is used as numerical engine, rainfall is introduced via the modification of waterlevels at fixed time intervals. The paper not only deals with the general application of the software, but intends to test the numerical stability and reliability of simulation results. The performed tests are made using different artificial as well as measured rainfall series as input. Key parameters of the simulation such as losses, roughness or time intervals for water level manipulations are tested regarding their impact on the stability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study was undertaken in a 1566 ha drainage basin situated in an area with cuesta relief in the state of São Paulo, Brazil. The objectives were: 1) to map the maximum potential soil water retention capacity, and 2) to simulate the depth of surface runoff in each geographical position of the area based on a typical rainfall event. The database required for the development of this research was generated in the environment of the geographical information system ArcInfo v.10.1. Undeformed soil samples were collected at 69 points. The ordinary kriging method was used in the interpolation of the values of soil density and maximum potential soil water retention capacity. The spherical model allowed for better adjustment of the semivariograms corresponding to the two soil attributes for the depth of 0 to 20 cm, while the Gaussian model enabled a better fit of the spatial behavior of the two variables for the depth of 20 to 40 cm. The simulation of the spatial distribution revealed a gradual increase in the depth of surface runoff for the rainfall event taken as example (25 mm) from the reverse to the peripheral depression of the cuesta (from west to east). There is a positive aspect observed in the gradient, since the sites of highest declivity, especially those at the front of the cuesta, are closer to the western boundary of the watershed where the lowest depths of runoff occur. This behavior, in conjunction with certain values of erodibility and depending on the land use and cover, can help mitigate the soil erosion processes in these areas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in Sao Carlos (Fazenda Canchim), in Sao Paulo State, Brazil. Experimental plots of 33 m(2) were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e. g., soil type, declivity, slope length, among others not analyzed in this study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim), in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Desenvolveu-se uma metodologia que permite obter o hidrograma de escoamento superficial e a vazão máxima para qualquer posição ao longo de uma encosta e para seções transversais de canais utilizando o modelo de ondas cinemáticas. A área da encosta é dividida num sistema matricial composto por 100 linhas e 100 colunas. Na encosta, considera-se que o escoamento ocorre na direção da declividade e que a vazão de cada pixel é a soma da vazão produzida nesse com a vazão advinda dos pixels que contribuem com o escoamento superficial para o pixel em análise. No canal, a vazão é calculada pela soma dos hidrogramas advindos das colunas do sistema reticulado. A comparação entre os valores de lâmina e vazão máxima de escoamento superficial obtidas experimentalmente e calculadas em duas condições (encosta e bacia) permitiu evidenciar que a metodologia, comparada aos métodos Racional e do Número da Curva, ofereceu boas estimativas tanto da lâmina quanto da vazão máxima de escoamento superficial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estimativas de vazão máxima de escoamento superficial são necessárias para o projeto de obras hidráulicas em bacias urbanas e rurais. A dificuldade em aplicar os procedimentos disponíveis para calcular a variação do escoamento superficial com o tempo e de seu valor máximo deve-se à inexatidão dos métodos usados para esse objetivo e à variabilidade nos resultados que podem ser obtidos por profissionais que usem o mesmo procedimento. Dessa forma, a investigação de um método que produza estimativas confiáveis da vazão máxima e do hidrograma de escoamento superficial é de grande interesse. Neste trabalho, desenvolveu-se e avaliou-se a sensibilidade de um software (HIDROGRAMA 2.1) que permite a obtenção do hidrograma de escoamento superficial, da vazão máxima e seu tempo de ocorrência, da altura e da velocidade máximas do escoamento, do volume e da lâmina de escoamento superficial em encosta e em canais. O modelo apresentou grande sensibilidade ao período de retorno, à taxa de infiltração estável e ao comprimento da encosta e do canal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Desertification is a critical issue for Mediterranean drylands. Climate change is expected to aggravate its extension and severity by reinforcing the biophysical driving forces behind desertification processes: hydrology, vegetation cover and soil erosion. The main objective of this thesis is to assess the vulnerability of Mediterranean watersheds to climate change, by estimating impacts on desertification drivers and the watersheds’ resilience to them. To achieve this objective, a modeling framework capable of analyzing the processes linking climate and the main drivers is developed. The framework couples different models adapted to different spatial and temporal scales. A new model for the event scale is developed, the MEFIDIS model, with a focus on the particular processes governing Mediterranean watersheds. Model results are compared with desertification thresholds to estimate resilience. This methodology is applied to two contrasting study areas: the Guadiana and the Tejo, which currently present a semi-arid and humid climate. The main conclusions taken from this work can be summarized as follows: • hydrological processes show a high sensitivity to climate change, leading to a significant decrease in runoff and an increase in temporal variability; • vegetation processes appear to be less sensitive, with negative impacts for agricultural species and forests, and positive impacts for Mediterranean species; • changes to soil erosion processes appear to depend on the balance between changes to surface runoff and vegetation cover, itself governed by relationship between changes to temperature and rainfall; • as the magnitude of changes to climate increases, desertification thresholds are surpassed in a sequential way, starting with the watersheds’ ability to sustain current water demands and followed by the vegetation support capacity; • the most important thresholds appear to be a temperature increase of +3.5 to +4.5 ºC and a rainfall decrease of -10 to -20 %; • rainfall changes beyond this threshold could lead to severe water stress occurring even if current water uses are moderated, with droughts occurring in 1 out of 4 years; • temperature changes beyond this threshold could lead to a decrease in agricultural yield accompanied by an increase in soil erosion for croplands; • combined changes of temperature and rainfall beyond the thresholds could shift both systems towards a more arid state, leading to severe water stresses and significant changes to the support capacity for current agriculture and natural vegetation in both study areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objetivo principal de este proyecto es la caracterización de la microcuenca la Jabonera (Estelí, Nicaragua) enfatizando el agua como factor clave que conecta todos los elementos que interaccionan en la microcuenca y que, además delimita el área de estudio. El trabajo de campo ha consistido básicamente en la georeferenciación de los puntos de interés, la realización de encuestas a la población y la evaluación de las fuentes de agua y del agua del río mediante análisis fisicoquímicos. En el procesamiento de la información se ha elaborado cartografía temática mediante la herramienta SIG que ha servido de soporte para la interpretación de los resultados. Las características morfométricas y biofísicas favorecen que el agua precipitada se pierda rápidamente por escorrentía superficial con una tendencia moderada a crecidas e inundaciones. El agua infiltrada circula rápidamente por fracturas del material geológico con tiempos de tránsito cortos, y además, el área de recarga de los nacientes es local por lo que las fuentes son especialmente vulnerables a períodos de sequía y a la contaminación en su entorno cercano. El estudio de usos del suelo junto con la realización de análisis del agua ha permitido determinar que los agroquímicos son la principal fuente potencial de contaminación del agua en la microcuenca. Los resultados obtenidos muestran la necesidad de llevar a cabo una gestión integrada del territorio que garantice un desarrollo socioambiental sostenible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of the field-scale Erosion Productivity Impact Calculator (EPIC) model was initiated in 1981 to support assessments of soil erosion impacts on soil productivity for soil, climate, and cropping conditions representative of a broad spectrum of U.S. agricultural production regions. The first major application of EPIC was a national analysis performed in support of the 1985 Resources Conservation Act (RCA) assessment. The model has continuously evolved since that time and has been applied for a wide range of field, regional, and national studies both in the U.S. and in other countries. The range of EPIC applications has also expanded greatly over that time, including studies of (1) surface runoff and leaching estimates of nitrogen and phosphorus losses from fertilizer and manure applications, (2) leaching and runoff from simulated pesticide applications, (3) soil erosion losses from wind erosion, (4) climate change impacts on crop yield and erosion, and (5) soil carbon sequestration assessments. The EPIC acronym now stands for Erosion Policy Impact Climate, to reflect the greater diversity of problems to which the model is currently applied. The Agricultural Policy EXtender (APEX) model is essentially a multi-field version of EPIC that was developed in the late 1990s to address environmental problems associated with livestock and other agricultural production systems on a whole-farm or small watershed basis. The APEX model also continues to evolve and to be utilized for a wide variety of environmental assessments. The historical development for both models will be presented, as well as example applications on several different scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tillage and manure application practices significantly impact surface and ground water quality in Iowa and other Midwestern states. Tillage and manure application that incorporates residue and disturbs soil result in higher levels of soil erosion and surface runoff. Phosphorus and sediment loading are closely linked to the increase in soil erosion and surface water runoff. Manure application (i.e., injection or incorporation) reduces surface residue cover, which can worsen soil erosion regardless of the tillage management system being used. An integrated system approach to manure and tillage management is critical to ensure effi cient nutrient use and improvement of soil and water quality. This approach, however, requires changes in manure application technology and tillage system management to ensure the success of an integrated

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deeply incised drainage networks are thought to be robust and not easily modified, and are commonly used as passive markers of horizontal strain. Yet, reorganizations (rearrangements) appear in the geologic record. We provide field evidence of the reorganization of a Miocene drainage network in response to strike-slip and vertical displacements in Guatemala. The drainage was deeply incised into a 50-km-wide orogen located along the North America-Caribbean plate boundary. It rearranged twice, first during the Late Miocene in response to transpressional uplift along the Polochic fault, and again in the Quaternary in response to transtensional uplift along secondary faults. The pattern of reorganization resembles that produced by the tectonic defeat of rivers that cross growing tectonic structures. Compilation of remote sensing data, field mapping, sediment provenance study, grain-size analysis and Ar(40)/Ar(39) dating from paleovalleys and their fill reveals that the classic mechanisms of river diversion, such as river avulsion over bedrock, or capture driven by surface runoff, are not sufficient to produce the observed diversions. The sites of diversion coincide spatially with limestone belts and reactivated fault zones, suggesting that solution-triggered or deformation-triggered permeability have helped breaching of interfluves. The diversions are also related temporally and spatially to the accumulation of sediment fills in the valleys, upstream of the rising structures. We infer that the breaching of the interfluves was achieved by headward erosion along tributaries fed by groundwater flow tracking from the valleys soon to be captured. Fault zones and limestone belts provided the pathways, and the aquifers occupying the valley fills provided the head pressure that enhanced groundwater circulation. The defeat of rivers crossing the rising structures results essentially from the tectonically enhanced activation of groundwater flow between catchments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the application of the Soil and Water Assessment Tool (SWAT) model to the Maquoketa River watershed, located in northeast Iowa. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS). Climatic data from six weather stations located in and around the watershed, and measured streamflow data from a U.S. Geological Survey gage station at the watershed outlet were used in the sensitivity analysis of SWAT model parameters as well as its calibration and validation for watershed hydrology and streamflow. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and base flow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters when applying SWAT to the Maquoketa River watershed. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model performance was evaluated by well-established statistical methods and was found to explain at least 86% and 69% of the variability in the measured stream flow data for the calibration and validation periods, respectively. This initial hydrologic modeling analysis will facilitate future applications of SWAT to the Maquoketa River watershed for various watershed analysis, including water quality.