911 resultados para supernovae: individual (Supernova 1987A)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M-1 similar to -17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modelling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modelling of the [O I] lambda lambda 6300, 6364 lines constrains the progenitors of these three SNe to the M-ZAMS = 12-16 M-circle dot range (ejected oxygen masses 0.3-0.9 M-circle dot), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from M-ZAMS greater than or similar to 17 M-circle dot progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low-to-moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of 0.02-0.14 M-circle dot is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO burning gives strong [N II] lambda lambda 6548, 6583 emission lines that dominate over Ha emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable H alpha emission or absorption after similar to 150 days, and nebular phase emission seen around 6550 angstrom is in many cases likely caused by [N II] lambda lambda 6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated. Significant line blocking in the metal core remains for several hundred days, which affects the emergent spectrum. These radiative transfer effects lead to early-time blueshifts of the emission line peaks, which gradually disappear as the optical depths decrease with time. The modelled evolution of this effect matches the observed evolution in SN 2011dh.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present data for LSQ14bdq, a hydrogen-poor super-luminous supernova (SLSN) discovered by the La Silla QUEST survey and classified by the Public ESO Spectroscopic Survey of Transient Objects. The spectrum and light curve are very similar to slow-declining SLSNe such as PTF12dam. However, detections within ∼1 day after explosion show a bright and relatively fast initial peak, lasting for ∼15 days, prior to the usual slow rise to maximum light. The broader, main peak can be fit with either central engine or circumstellar interaction models. We discuss the implications of the precursor peak in the context of these models. It is too bright and narrow to be explained as a normal <sup>56</sup>Ni-powered SN, and we suggest that interaction models may struggle to fit the two peaks simultaneously. We propose that the initial peak may arise from the post-shock cooling of extended stellar material, and reheating by a central engine drives the second peak. In this picture, we show that an explosion energy of ∼2 × 10<sup>52</sup> erg and a progenitor radius of a few hundred solar radii would be required to power the early emission. The competing engine models involve rapidly spinning magnetars (neutron stars) or fallback onto a central black hole. The prompt energy required may favor the black hole scenario. The bright initial peak may be difficult to reconcile with a compact Wolf-Rayet star as a progenitor since the inferred energies and ejected masses become unphysical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the 56Ni mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical- infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass M env ∼ 20 M , progenitor radius R ∼ 3 × 1013 cm (∼430 R), explosion energy E ∼ 1.5 foe, and initial 56Ni mass ∼0.06 M. These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 ± 1.5 M of the Type IIP events. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present photospheric-phase observations of LSQ12gdj, a slowly declining, UV-bright Type Ia supernova. Classified well before maximum light, LSQ12gdj has extinction-corrected absolute magnitude MB = -19.8, and pre-maximum spectroscopic evolution similar to SN 1991T and the super-Chandrasekhar-mass SN 2007if. We use ultraviolet photometry from Swift, ground-based optical photometry, and corrections from a near-infrared photometric template to construct the bolometric (1600-23 800 Å) light curve out to 45 d past B-band maximum light. We estimate that LSQ12gdj produced 0.96 ± 0.07 M· of 56Ni, with an ejected mass near or slightly above the Chandrasekhar mass. As much as 27 per cent of the flux at the earliest observed phases, and 17 per cent at maximum light, is emitted bluewards of 3300 Å. The absence of excess luminosity at late times, the cutoff of the spectral energy distribution bluewards of 3000 Å and the absence of narrow line emission and strong Na I D absorption all argue against a significant contribution from ongoing shock interaction. However, ~10 per cent of LSQ12gdj's luminosity near maximum light could be produced by the release of trapped radiation, including kinetic energy thermalized during a brief interaction with a compact, hydrogen-poor envelope (radius <1013 cm) shortly after explosion; such an envelope arises generically in double-degenerate merger scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, though with a steeper rise and lower peak luminosity (M bol ~= -21.4 mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzj's energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy (MB ≈ -18 mag, diameter

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present optical and near-infrared (NIR) photometry and NIR spectroscopy of SN 2004am, the only optically detected supernova (SN) in M82. These demonstrate that SN 2004am was a highly reddened Type II-P SN similar to the low-luminosity Type II-P events such as SNe 1997D and 2005cs. We show that SN 2004am was located coincident with the obscured super star cluster M82-L, and from the cluster age infer a progenitor mass of 12{^{+ 7}_{- 3}} M⊙. In addition to this, we present a high spatial resolution Gemini-North Telescope K-band adaptive optics image of the site of SN 2008iz and a second transient of uncertain nature, both detected so far only at radio wavelengths. Using image subtraction techniques together with archival data from the Hubble Space Telescope, we are able to recover a NIR transient source coincident with both objects. We find the likely extinction towards SN 2008iz to be not more than AV ˜ 10. The nature of the second transient remains elusive and we regard an extremely bright microquasar in M82 as the most plausible scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the identification of the progenitor of the Type IIP SN 2012ec in archival pre-explosion Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) and Advanced Camera for Surveys Wide Field Channel F814W images. The properties of the progenitor are further constrained by non-detections in pre-explosion WFPC2 F450W and F606W images. We report a series of early photometric and spectroscopic observations of SN 2012ec. The r'-band light curve shows a plateau with M_{r^' }}=-17.0. The early spectrum is similar to the Type IIP SN 1999em, with the expansion velocity measured at Hα absorption minimum of -11 700 km s-1 (at 1 d post-discovery). The photometric and spectroscopic evolution of SN 2012ec shows it to be a Type IIP SN, discovered only a few days post-explosion (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the Pan-STARRS1 discovery of PS1-10afx, a unique hydrogen-deficient superluminous supernova (SLSN) at redshift z = 1.388. The light curve peaked at z P1 = 21.7 mag, making PS1-10afx comparable to the most luminous known SNe, with Mu = -22.3 mag. Our extensive optical and near-infrared observations indicate that the bolometric light curve of PS1-10afx rose on the unusually fast timescale of ~12 days to the extraordinary peak luminosity of 4.1 × 1044 erg s-1 (M bol = -22.8 mag) and subsequently faded rapidly. Equally important, the spectral energy distribution is unusually red for an SLSN, with a color temperature of ~6800 K near maximum light, in contrast to previous hydrogen-poor SLSNe, which are bright in the ultraviolet (UV). The spectra more closely resemble those of a normal SN Ic than any known SLSN, with a photospheric velocity of ~11, 000 km s-1 and evidence for line blanketing in the rest-frame UV. Despite the fast rise, these parameters imply a very large emitting radius (gsim 5 × 1015 cm). We demonstrate that no existing theoretical model can satisfactorily explain this combination of properties: (1) a nickel-powered light curve cannot match the combination of high peak luminosity with the fast timescale; (2) models powered by the spindown energy of a rapidly rotating magnetar predict significantly hotter and faster ejecta; and (3) models invoking shock breakout through a dense circumstellar medium cannot explain the observed spectra or color evolution. The host galaxy is well detected in pre-explosion imaging with a luminosity near L*, a star formation rate of ~15 M ⊙ yr-1, and is fairly massive (~2 × 1010 M ⊙), with a stellar population age of ~108 yr, also in contrast to the young dwarf hosts of known hydrogen-poor SLSNe. PS1-10afx is distinct from known examples of SLSNe in its spectra, colors, light-curve shape, and host galaxy properties, suggesting that it resulted from a different channel than other hydrogen-poor SLSNe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3π survey just ~4 days after explosion. The supernova (SN) had a peak luminosity, MR ≈ -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v Si ≈ 19 × 103 km s-1 at ~40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines ~2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56Ni, M Ni = 0.9 M ⊙. Applying scaling relations to the light curve, we estimate a total ejecta mass, M ej ≈ 4.7 M ⊙, and total kinetic energy, EK ≈ 11 × 1051 erg. The ratio of M Ni to M ej is ~2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log (O/H)PP04 + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and ~0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E γ ~ 1048 erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less-stringent constraints on a weak afterglow like that seen from XRF 060218. If this SN did not harbor a GRB, these observations challenge the importance of progenitor metallicity for the production of relativistic ejecta and suggest that other parameters also play a key role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the Pan-STARRS1 discovery and light curves, and follow-up MMT and Gemini spectroscopy of an ultraluminous supernova (ULSN; dubbed PS1-11bam) at a redshift of z = 1.566 with a peak brightness of M UV ≈ -22.3 mag. PS1-11bam is one of the highest redshift spectroscopically confirmed SNe known to date. The spectrum exhibits broad absorption features typical of previous ULSNe (e.g., C II, Si III), and strong and narrow Mg II and Fe II absorption lines from the interstellar medium (ISM) of the host galaxy, confirmed by an [O II]λ3727 emission line at the same redshift. The equivalent widths of the Fe II λ2600 and Mg II λ2803 lines are in the top quartile of the quasar intervening absorption system distribution, but are weaker than those of gamma-ray burst intrinsic absorbers (i.e., GRB host galaxies). We also detect the host galaxy in pre-explosion Pan-STARRS1 data and find that its UV spectral energy distribution is best fit with a young stellar population age of τ* ≈ 15-45 Myr and a stellar mass of M * ≈ (1.1-2.6) × 109 M ⊙ (for Z = 0.05-1 Z ⊙). The star formation rate inferred from the UV continuum and [O II]λ3727 emission line is ≈10 M ⊙ yr-1, higher than in previous ULSN hosts. PS1-11bam provides the first direct demonstration that ULSNe can serve as probes of the ISM in distant galaxies. The depth and red sensitivity of PS1 are uniquely suited to finding such events at cosmologically interesting redshifts (z ~ 1-2); the future combination of LSST and 30 m class telescopes promises to extend this technique to z ~ 4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superluminous supernovae (SLSNe) of Type Ic have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. PTF12dam is one of the closest and best-studied superluminous explosions that has a broad and slowly fading light curve similar to SN 2007bi. Here we present new photometry and spectroscopy for PTF12dam from 200-500 d (rest frame) after peak and a detailed analysis of the host galaxy (SDSS J142446.21+461348.6 at z = 0.107). Using deep templates and image subtraction we show that the light curve can be fit with a magnetar model if escape of high-energy gamma rays is taken into account. The full bolometric light curve from -53 to +399 d (with respect to peak) cannot be fit satisfactorily with the pair-instability models. An alternative model of interaction with a dense circumstellar material (CSM) produces a good fit to the data although this requires a very large mass (˜13 M⊙) of hydrogen-free CSM. The host galaxy is a compact dwarf (physical size ˜1.9 kpc) and with Mg = -19.33 ± 0.10, it is the brightest nearby SLSN Ic host discovered so far. The host is a low-mass system (2.8 × 108 M⊙) with a star formation rate (5.0 M⊙ yr-1), which implies a very high specific star formation rate (17.9 Gyr-1). The remarkably strong nebular emission provide detections of the [O III] λ4363 and [O II] λλ7320, 7330auroral lines and an accurate oxygen abundance of 12 + log (O/H) = 8.05 ± 0.09. We show here that they are at the extreme end of the metallicity distribution of dwarf galaxies and propose that low metallicity is a requirement to produce these rare and peculiar SNe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fortuitous occurrence of a type II-Plateau (IIP) supernova, SN 2014bc, in a galaxy for which distance estimates from a number of primary distance indicators are available provides a means with which to cross-calibrate the standardised candle method (SCM) for type IIP SNe. By applying calibrations from the literature we find distance estimates in line with the most precise measurement to NGC 4258 based on the Keplerian motion of masers (7:6 ± 0:23 Mpc), albeit with significant scatter. We provide an alternative local SCM calibration by only considering type IIP SNe that have occurred in galaxies for which a Cepheid distance estimate is available. We find a considerable reduction in scatter (σ<inf>I</inf> = 0:16 mag), but note that the current sample size is limited. Applying this calibration, we estimate a distance to NGC 4258 of 7:08 ± 0:86 Mpc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present optical and near-infrared (NIR) photometry and spectroscopy as well as modelling of the lightcurves of the Type IIb supernova (SN) 2011dh. Our extensive dataset, for which we present the observations obtained after day 100, spans two years, and complemented with Spitzer mid-infrared (MIR) data, we use it to build an optical-to-MIR bolometric lightcurve between days 3 and 732. To model the bolometric lightcurve before day 400 we use a grid of hydrodynamical SN models, which allows us to determine the errors in the derived quantities, and a bolometric correction determined with steady-state non-local thermodynamic equilibrium (NLTE) modelling. Using this method we find a helium core mass of 3.1<sup>+0.7</sup><inf>-0.4</inf> M<inf>⊙</inf> for SN 2011dh, consistent within error bars with previous results obtained using the bolometric lightcurve before day 80. We compute bolometric and broad-band lightcurves between days 100 and 500 from spectral steady-state NLTE models, presented and discussed in a companion paper. The preferred 12 M<inf>⊙</inf> (initial mass) model, previously found to agree well with the observed spectra, shows a good overall agreement with the observed lightcurves, although some discrepancies exist. Time-dependent NLTE modelling shows that after day ∼600 a steady-state assumption is no longer valid. The radioactive energy deposition in this phase is likely dominated by the positrons emitted in the decay of <sup>56</sup>Co, but seems insufficient to reproduce the lightcurves, and what energy source is dominating the emitted flux is unclear. We find an excess in the K and the MIR bands developing between days 100 and 250, during which an increase in the optical decline rate is also observed. A local origin of the excess is suggested by the depth of the He I 20 581 Å absorption. Steady-state NLTE models with a modest dust opacity in the core (τ = 0.44), turned on during this period, reproduce the observed behaviour, but an additional excess in the Spitzer 4.5 μm band remains. Carbon-monoxide (CO) first-overtone band emission is detected at day 206, and possibly at day 89, and assuming the additional excess to bedominated by CO fundamental band emission, we find fundamental to first-overtone band ratios considerably higher than observed in SN 1987A. The profiles of the [O i] 6300 Å and Mg i] 4571 Å lines show a remarkable similarity, suggesting that these lines originate from a common nuclear burning zone (O/Ne/Mg), and using small scale fluctuations in the line profiles we estimate a filling factor of ≲ 0.07 for the emitting material. This paper concludes our extensive observational and modelling work on SN 2011dh. The results from hydrodynamical modelling, steady-state NLTE modelling, and stellar evolutionary progenitor analysis are all consistent, and suggest an initial mass of ∼12 M<inf>⊙</inf> for the progenitor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on our findings based on the analysis of observations of the Type II-L supernova LSQ13cuw within the framework of currently accepted physical predictions of core-collapse supernova explosions. LSQ13cuw was discovered within a day of explosion, hitherto unprecedented for Type II-L supernovae. This motivated a comparative study of Type II-P and II-L supernovae with relatively well-constrained explosion epochs and rise times to maximum (optical) light. From our sample of twenty such events, we find evidence of a positive correlation between the duration of the rise and the peak brightness. On average, SNe II-L tend to have brighter peak magnitudes and longer rise times than SNe II-P. However, this difference is clearest only at the extreme ends of the rise time versus peak brightness relation. Using two different analytical models, we performed a parameter study to investigate the physical parameters that control the rise time behaviour. In general, the models qualitatively reproduce aspects of the observed trends. We find that the brightness of the optical peak increases for larger progenitor radii and explosion energies, and decreases for larger masses. The dependence of the rise time on mass and explosion energy is smaller than the dependence on the progenitor radius. We find no evidence that the progenitors of SNe II-L have significantly smaller radii than those of SNe II-P.