970 resultados para supernovae: individual: SN 2009ip SN 2000ch


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Part of Rimsky-Korsakov's music to Pi︠e︡snʹ o vi︠e︡shchem Olegi︠e︡: p. [127-128].

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Calculations of synthetic spectropolarimetry are one means to test multidimensional explosion models for Type Ia supernovae. In a recent paper, we demonstrated that the violent merger of a 1.1 and 0.9 M⊙ white dwarf binary system is too asymmetric to explain the low polarization levels commonly observed in normal Type Ia supernovae. Here, we present polarization simulations for two alternative scenarios: the sub-Chandrasekhar mass double-detonation and the Chandrasekhar mass delayed-detonation model. Specifically, we study a 2D double-detonation model and a 3D delayed-detonation model, and calculate polarization spectra for multiple observer orientations in both cases. We find modest polarization levels (<1 per cent) for both explosion models. Polarization in the continuum peaks at ∼0.1–0.3 per cent and decreases after maximum light, in excellent agreement with spectropolarimetric data of normal Type Ia supernovae. Higher degrees of polarization are found across individual spectral lines. In particular, the synthetic Si II λ6355 profiles are polarized at levels that match remarkably well the values observed in normal Type Ia supernovae, while the low degrees of polarization predicted across the O I λ7774 region are consistent with the non-detection of this feature in current data. We conclude that our models can reproduce many of the characteristics of both flux and polarization spectra for well-studied Type Ia supernovae, such as SN 2001el and SN 2012fr. However, the two models considered here cannot account for the unusually high level of polarization observed in extreme cases such as SN 2004dt.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Supernova (SN) is an explosion of a star at the end of its lifetime. SNe are classified to two types, namely type I and II through the optical spectra. They have been categorised based on their explosion mechanism, to core collapse supernovae (CCSNe) and thermonuclear supernovae. The CCSNe group which includes types IIP, IIn, IIL, IIb, Ib, and Ic are produced when a massive star with initial mass more than 8 M⊙ explodes due to a collapse of its iron core. On the other hand, thermonuclear SNe originate from white dwarfs (WDs) made of carbon and oxygen, in a binary system. Infrared astronomy covers observations of astronomical objects in infrared radiation. The infrared sky is not completely dark and it is variable. Observations of SNe in the infrared give different information than optical observations. Data reduction is required to correct raw data from for example unusable pixels and sky background. In this project, the NOTCam package in the IRAF was used for the data reduction. For measuring magnitudes of SNe, the aperture photometry method with the Gaia program was used. In this Master’s thesis, near-infrared (NIR) observations of three supernovae of type IIn (namely LSQ13zm, SN 2009ip and SN2011jb), one type IIb (SN2012ey), in addition to one type Ic (SN2012ej) and type IIP (SN 2013gd) are studied with emphasis on luminosity and colour evolution. All observations were done with the Nordic Optical Telescope (NOT). Here, we used the classification by Mattila & Meikle (2001) [76], where the SNe are differentiated by the infrared light curves into two groups, namely ’ordinary’ and ’slowly declining’. The light curves and colour evolution of these supernovae were obtained in J, H and Ks bands. In this study, our data, combined with other observations, provide evidence to categorize LSQ13zm, SN 2012ej and SN 2012ey as being part of the ordinary type. We found interesting NIR behaviour of SN 2011jb, which lead it to be classified as a slowly declining type.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ethanol oxidation has been studied on Pt-Sn and Pt-Sn-W electrodes prepared in an arc-melting furnace. Different electrochemical techniques like cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activity of these materials. The electro-oxidation process was also investigated by in situ infrared reflectance spectroscopy in order to determine adsorbed intermediates and reaction products. Experimental results indicated that Pt-Sn and Pt-Sn-W alloys are able to oxidize ethanol mainly to acetaldehyde and acetic acid. Adsorbed CO was also detected, demonstrating the viability of splitting the C-C bond in the ethanol molecule during the oxidation process. The adsorbed CO was further oxidized to CO2.This reaction product was clearly detected by SNIFTIRS. Pt-Sn-W catalyst showed a better electrochemical performance than Pt-Sn that, in it turn, is better than Pt-alone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report optical observations of the luminous blue variable (LBV) HR Carinae which show that the star has reached a visual minimum phase in 2009. More importantly, we detected absorptions due to Si lambda lambda 4088-4116. To match their observed line profiles from 2009 May, a high rotational velocity of nu(rot) similar or equal to 150 +/- 20 km s(-1) is needed (assuming an inclination angle of 30 degrees), implying that HR Car rotates at similar or equal to 0.88 +/- 0.2 of its critical velocity for breakup (nu(crit)). Our results suggest that fast rotation is typical in all strong-variable, bona fide galactic LBVs, which present S-Dor-type variability. Strong-variable LBVs are located in a well-defined region of the HR diagram during visual minimum (the ""LBV minimum instability strip""). We suggest this region corresponds to where nu(crit) is reached. To the left of this strip, a forbidden zone with nu(rot)/nu(crit) > 1 is present, explaining why no LBVs are detected in this zone. Since dormant/ex LBVs like P Cygni and HD 168625 have low nu(rot), we propose that LBVs can be separated into two groups: fast-rotating, strong-variable stars showing S-Dor cycles (such as AG Car and HR Car) and slow-rotating stars with much less variability (such as P Cygni and HD 168625). We speculate that supernova (SN) progenitors which had S-Dor cycles before exploding (such as in SN 2001ig, SN 2003bg, and SN 2005gj) could have been fast rotators. We suggest that the potential difficulty of fast-rotating Galactic LBVs to lose angular momentum is additional evidence that such stars could explode during the LBV phase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cross sections of (120)Sn(alpha,alpha)(120)Sn elastic scattering have been extracted from the alpha-particle-beam contamination of a recent (120)Sn((6)He,(6)He)(120)Sn experiment. Both reactions are analyzed using systematic double-folding potentials in the real part and smoothly varying Woods-Saxon potentials in the imaginary part. The potential extracted from the (120)Sn((6)He,(6)He)(120)Sn data may be used as the basis for the construction of a simple global (6)He optical potential. The comparison of the (6)He and alpha data shows that the halo nature of the (6)He nucleus leads to a clear signature in the reflexion coefficients eta(L) : The relevant angular momenta L with eta(L) >> 0 and eta(L) << 1 are shifted to larger L with a broader distribution. This signature is not present in the alpha-scattering data and can thus be used as a new criterion for the definition of a halo nucleus.