244 resultados para subtropics
Resumo:
Background: The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission. Methodology: Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 angstrom resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date. Conclusion: The structure of AaegOBP1 (= AaegOBP39) shares the common fold of insect OBPs with six alpha-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this ""lid"" may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.
Resumo:
We examined the distribution of butterflies over the mostly arid and semi-arid continent of Australia and analyzed the proportion of migrant species and species diversity with respect to an array of climatic and geographic variables. On a continent-wide scale, latitude explained virtually no variance in either proportion of migrants (r(2) = 0.01) or species diversity (r(2) = 0.03) in Australian butterflies. These results are in marked contrast to those for temperate-zone birds from three continents where latitude explained between 82 and 98% of the variance in frequency of migrants and also accounted for much of the variance in bird species diversity. In eastern Australia where rainfall regimes are similar to those in temperate Europe and North and South America, latitude explains 78% of the variance in frequency of butterfly migrants. In both eastern and central Australia, latitude also accounts for relatively high proportions of the variance in species diversity. Rainfall patterns and especially soil moisture are negatively associated with migration frequency in Australian butterfly faunas, both alone and in combination with other climate variables. Where moisture levels are relatively high, as in eastern Australia, measures of temperature are associated with migration frequency, a result consistent with findings for temperate-zone birds, suggesting latitude is a surrogate for temperature. The ultimate causes of migration in temperate-zone birds and Australian butterflies are the uneven temporal, and in Australia also spatial, distribution of resources. Uneven distribution is brought about primarily by temperature in temperate regions and by erratic rainfall over much of arid Australia. As a key determinant of productivity, especially in the tropics and subtropics, aridity is likely to be an important determinant of the global distributions of migrants.
Resumo:
Thirty steers were used in two pen experiments (Expts 1 and 2). and 27 of these in a third (Expt 3), to quantify their responses of hay intake, rumen ammonia nitrogen (RAN) concentrations, and liveweight to inputs of rumen soluble nitrogen (urea) and rumen undegradable protein (formaldehyde-treated casein; F-casein) when added to a basal diet of low quality hays. The hays were made From unimproved native pastures typical of those grazed by cattle in the subtropics of Australia and contained 7.8 g N/kg dry matter (DM) with coefficient of organic matter digestibility of 0.503 in Expts 1 and 2, and 5.2 g N/kg DM with a digestibility range from 0.385 to 0.448 in Expt 3. The steers (15 months old) were either Brahman (B), Hereford (H) or the F-1 Brahman x Hereford (BH) cross. Steers were offered supplementary minerals with the hays in each experiment. In Expt 1 (35 days) urea was sprayed on part of the hay, allowing for daily urea intakes (g/steer) of either 0, 5, 11, 16 or 26. In Expt 2 (42 days), F-casein was offered daily (g/steer) at either 0, 75, 150, 225 or 300 and in Expt 3 (56 days) discrete offerings were made of soluble casein (225 g/day), of urea (18 g/day) + F-casein (225 g/day) or of nil. There were significant linear effects of urea intake upon hay intake and liveweight change of steers. However, B steers had smaller increases in intake and liveweight change than did H steers, and B steers did not have a linear increase in RAN concentrations with increasing urea intake as did H and SH steers. In Expt 2 there were significant linear effects of F-casein supplements on hay intake and liveweight change of steers and a significant improvement in their feed conversion ratio (i.e. DM intake:liveweight change). The B steers did not differ from H and BH steers in liveweight change but had significantly lower hay intakes and non-significantly smaller increases in RAN with increasing F-casein intake. In Expt 3, hay intake of the steers increased with soluble casein (by 16.8 %) and with urea + F-casein (24.5 %). Only steers given urea + F-casein had a high RAN concentration (94 mg/l) and a high liveweight gain. The B steers had a liveweight loss and a lower hay intake than H or BH steers in Expt 3 but a higher RAN concentration. These studies have indicated the importance of the form and quantity of additional N required by cattle of differing breed types to optimize their feed intake and liveweight gain when offered low-N, low-digestible hays.
Resumo:
Nest orientation in social insects has been intensively studied in warmer and cooler climates, particularly in the northern hemisphere. Previous studies have consistently shown that species subjected to these climatic conditions prefer to select mostly southern locations where the nests can gain direct sunlight. However, very little is known on nest orientation in tropical and subtropical social insects. We studied nest orientations initiated by swarms throughout a year in a Brazilian swarm-founding wasp, Polybia paulista von Ihering (Hymenoptera: Polistinae). Swarms selected various orientations as nest sites, but there was a particular trend in that swarms in the winter period (May-August) preferred to build northward-facing nests. This preference is opposite from that of social wasps observed in the northern hemisphere. Colonies of this species can potentially last for many years with continuous nesting, but nesting activities of colonies during the winter are severely limited due to cool temperature and a shortened day length. Northward-facing nests are warmer through the gain of direct solar heat during the winter period; consequently, choosing northward-facing sites may be advantageous for swarms in terms of a shortened brood development and shortened time needed to increase metabolic rates during warm-up for flight.
Resumo:
Lyngbya majuscula is a benthic filamentous marine cyanobacterium, which in recent years appears to have been increasing in frequency and size of blooms in Moreton Bay, Queensland. It has a worldwide distribution throughout the tropics and subtropics in water to 30m. It has been found to contain a variety of chemicals that exert a range of biological effects, including skin, eye and respiratory irritation. The toxins lyngbyatoxin A and debromoaplysiatoxin appear to give the most widely witnessed biological effects in relation to humans, and experiments involving these two toxins show the formation of acute dermal lesions. Studies into the epidemiology of the dermatitic, respiratory and eye effects of the toxins of this organism are reviewed and show that Lyngbya induced dermatitis has occurred in a number of locations. The effects of aerosolised Lyngbya in relation to health outcomes were also reported. Differential effects of bathing behaviour after Lyngbya exposure were examined in relation to the severity of health outcomes. The potential for Lyngbya to exhibit differential toxicologies due to the presence of varying proportions of a range of toxins is also examined. This paper reviews the present state of knowledge on the effects of Lyngbya majuscula on human health, ecosystems and human populations during a toxic cyanobacterial bloom. The potential exists for toxins from Lyngbya majuscula affecting ecological health and in particular marine reptiles. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Understanding the pattern in which adult drosophilids of different species are distributed across and within different vegetation types is necessary for accurate interpretation of their local ecology and diversity. Such studies have been conducted mainly in temperate regions, and there is no basis for extrapolating their conclusions to tropical areas. This study describes the vertical distribution (0-20 m) of drosophilids attracted to banana baits in five different vegetation types in subtropical eastern Australia including open woodland, and rain-forest types. The distribution of most of the 15 common species could be characterized three-dimensionally by vegetation type and height above forest floor. Only one species, Scaptodrosophila lativittata, was common in all vegetation types and it was a canopy species in rain forests and a ground-level species in open woodland. Vertical distribution of some species clearly matched that of their larval hosts, but it did not in others. For example, the fungivore Leucophenga scutellata was mostly trapped well above the forest floor, yet it breeds at ground level, suggesting behavioural mode can influence vertical distributions. We conclude that the vertical dimension, although still poorly understood in relation to drosophilid habitats, needs to be taken into account when conducting and interpreting studies aimed at understanding drosophilid populations and communities in the subtropics.
Resumo:
Breeding methodologies for cultivated lucerne (Medicago sativa L.), an autotetraploid, have changed little over the last 50 years, with reliance on polycross methods and recurrent phenotypic selection. There has been, however, an increase in our understanding of lucerne biology, in particular the genetic relationships between members of the M. sativa complex, as deduced by DNA analysis. Also, the differences in breeding behaviour and vigour of diploids versus autotetraploids, and the underlying genetic causes, are discussed in relation to lucerne improvement. Medicago falcata, a member of the M. sativa complex, has contributed substantially to lucerne improvement in North America, and its diverse genetics would appear to have been under-utilised in Australian programs over the last two decades, despite the reduced need for tolerance to freezing injury in Australian environments. Breeding of lucerne in Australia only commenced on a large scale in 1977, driven by an urgent need to introgress aphid resistance into adapted backgrounds. The release in the early 1980s of lucernes with multiple pest and disease resistance (aphids, Phytophthora, Colletotrichum) had a significant effect on increasing lucerne productivity and persistence in eastern Australia, with yield increases under high disease pressure of up to 300% being recorded over the predominant Australian cultivar, up to 1977, Hunter River. Since that period, irrigated lucerne yields have plateaued, highlighting the need to identify breeding objectives, technologies, and the germplasm that will create new opportunities for increasing performance. This review discusses major goals for lucerne improvement programs in Australia, and provides indications of the germplasm sources and technologies that are likely to deliver the desired outcomes.
Resumo:
The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Tryanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles it? the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory), transport and protein glycosylation that may be exploited in developing new antiparasite drugs.
Resumo:
This study (1) investigated functional (capture rate, foraging success) and numerical (density) responses of bar-tailed godwits Limosa lapponica to an experimental decrease in densities of their prey, and (2) estimated seasonal depletion of the stock of their main prey, the mictyrid crab Mictyris longicarpus, in a subtropical estuary. It was predicted that if intake rates of the godwits are in the vicinity of the gradient section of a functional response curve, i.e. are directly determined by prey density, they will respond rapidly to experimental reduction in the density of their prey. Bar-tailed godwits did respond rapidly, both functionally and numerically, to a decrease in the density of M longicarpus, indicating that their intake rate was limited by food availability. The estimated seasonal depletion of the stocks of Mictyris by the godwits was 88 % of the initial standing stock. Despite the virtual disappearance of Mictyris from sediment samples through the course of a non-breeding season, local densities of godwits did not change between October and March, implying that adequate rates of intake could be maintained throughout their residence period.
Resumo:
Leaf water relations responses to limited water supply were determined in 7-month-old plants of a dry inland provenance of Eucalyptus argophloia Blakely and in a humid coastal provenance (Gympie) and a dry inland provenance (Hungry Hills) of Eucalyptus cloeziana F. Muell. Each provenance of E. cloeziana exhibited a lower relative water content at the turgor loss point, a lower apoplastic water content, a smaller ratio of dry mass to turgid mass and a lower bulk modulus of elasticity than the single provenance of E. argophloia. Osmotic potential at full turgor and water potential at the turgor loss point were significantly lower in E. argophloia and the inland provenance of E. cloeziana than in the coastal provenance of E. cloeziana. There was limited osmotic adjustment in response to soil drying in E. cloeziana, but not in E. argophloia. Between-species differences in water relations parameters were larger than those between the E. cloeziana provenances. Both E. cloeziana provenances maintained turgor under moderate water stress through a combination of osmotic and elastic adjustments. Eucalyptus argophloia had more rigid cell walls and reached lower water potentials with less reduction in relative water content than either of the E. cloeziana provenances, thereby enabling it to extract water from dryer soils.
Resumo:
Cutaneous leishmaniases have persisted for centuries as chronically disfiguring parasitic infections affecting millions of people across the subtropics. Symptoms range from the more prevalent single, self-healing cutaneous lesion to a persistent, metastatic disease, where ulcerations and granulomatous nodules can affect multiple secondary sites of the skin and delicate facial mucosa, even sometimes diffusing throughout the cutaneous system as a papular rash. The basis for such diverse pathologies is multifactorial, ranging from parasite phylogeny to host immunocompetence and various environmental factors. Although complex, these pathologies often prey on weaknesses in the innate immune system and its pattern recognition receptors. This review explores the observed and potential associations among the multifactorial perpetrators of infectious metastasis and components of the innate immune system.
Resumo:
ABSTRACT The flavor quality of citrus fruits is largely determined by the sugar-acid ratio, but it remains uncertain how sugar- and/or acid-metabolizing enzymes regulate the sugar-acid ratio of navel oranges and further affect the fruit quality. In the present study, Robertson navel oranges (Citrus sinesis Osb.) were collected from six representative habitats in three eco-regions of Sichuan, China. The changes in the sugar-acid ratio and the activities of sucrose phosphate synthase (SPS), sucrose synthase (SS), cytosolic cio-aconitase (ACO), and isocitrate dehydrogenase (IDH) were examined in navel oranges during fruit development. The results indicated that the sugar-acid ratio of fruits in different eco-regions changed significantly from 150 days after full bloom. The SPS and cytosolic ACO fruit activities had minor changes among different ecoregions throughout the experimental periods, whereas the activities of SS and IDH changed significantly in fruits among three eco-regions. Furthermore, the sugar-acid ratio and the activities of SS in the synthetic direction and IDH were the highest in south subtropics and the lowest in north mid-subtropics, probably due to the effects of climate conditions and/or other relevant eco-factors. It demonstrated that SS in the synthetic direction and IDH were of greater importance in regulating the sugar-acid ratio of navel oranges in different eco-regions, which provided new insights into the factors that determine the flavor quality of navel oranges and valuable data for guiding relevant agricultural practices.
Resumo:
Termites are well -known for their capacity to damage and destroy wood and wood products of all kinds in the tropics and subtropics. A field test was undertaken to evaluate variations in wood consumption of Pinus sp. and three species of Eucalyptus by subterranean termites. The test consisted of wooden stakes of each species being initially submitted to water immersion for 0, 24, 48 and 72 h, and buried in the ground to natural infestation by subterranean termites for an exposure period of 30, 45 and 60 days. Three species of subterranean termites were identified: Heterotermes longiceps (Snyder), Coptotermes gestroi (Wasmann) (Isoptera: Rhinotermitidae), and Nasutitermes jaraguae (Holmgren) (Isoptera: Termitidae). This is the first record of occurrence of H. longiceps in the state of Rio de Janeiro. Although the wood-consumption rates were not correlated significantly with their wood densities, there was a tendency of the softwoods (E. robusta and Pinus sp.) to be more consumed by subterranean termites than the woods of intermediate hardness (E. pellita and E. urophylla). Among the eucalyptus, E. robusta showed to be more susceptible to attack by subterranean termites than E. pellita and E. urophylla
Resumo:
Considering the importance of diversity of micro algae in our ecosystem and new invasion of many organisms, an attempt was made to monitor the Cochin estuary along the south west coast of India for the qualitative distribution of phytoplankton and to study the growth kinetics and allelopathic effect of the phaeocystis sp. Isolated from the cochin estuary. Phaeocystis blooms are common only in high latitude environments and they rarely occur in low latitude environments such as tropics and subtropics. As phaeocystis is grouped under harmful alga ,in the present study the factors causing the blooms formation in the ecosystem. The nutrient concentration of the water body along with other physiochemical parameters that includes temperature salinity and ph play an important role in triggering the bloom of phaeocystis .The phaeocystis harbor specific bacterial flora associated with it and they exert an important role in the growth ,haemolytic activity and the bloom phases of the alga. The harmful alga mainly depends on the production of alleopathic compounds for the establishment of bloom in the marine environments .These physiological properties of the phaecystis were considered for the study, along with the role of nutrients in the allelopathic and hemolytic activity
Resumo:
Organic agriculture requires farmers with the ability to develop profitable agro-enterprises on their own. By drawing on four years of experiences with the Enabling Rural Innovation approach in Uganda, we outline how smallholder farmers transition to organic agriculture and, at the same time, increase their entrepreneurial skills and competences through learning. In order to document this learning we operationalised the Kirkpatrick learning evaluation model, which subsequently informed the collection of qualitative data in two study sites. Our analysis suggests that the Enabling Rural Innovation approach helps farmers to develop essential capabilities for identifying organic markets and new organic commodities, for testing these organic commodities under varying organic farm management scenarios, and for negotiating contracts with organic traders. We also observed several obstacles that confront farmers’ transition to organic agriculture when using the Enabling Rural Innovation approach. These include the long duration of agronomic experimentation and seed multiplication, expensive organic certification procedures and the absence of adequate mechanism for farmers to access crop finance services. Despite prevailing obstacles we conclude that the Enabling Rural Innovation approach provides a starting point for farmers to develop entrepreneurial competences and profitable agro-enterprises on their own.