684 resultados para subtidal macroalgal communities
Resumo:
Marine plants colonise several interconnected ecosystems in the Great Barrier Reef region including tidal wetlands, seagrass meadows and coral reefs. Water quality in some coastal areas is declining from human activities. Losses of mangrove and other tidal wetland communities are mostly the result of reclamation for coastal development of estuaries, e.g. for residential use, port infrastructure or marina development, and result in river bank destabilisation, deterioration of water clarity and loss of key coastal marine habitat. Coastal seagrass meadows are characterized by small ephemeral species. They are disturbed by increased turbidity after extreme flood events, but generally recover. There is no evidence of an overall seagrass decline or expansion. High nutrient and substrate availability and low grazing pressure on nearshore reefs have lead to changed benthic communities with high macroalgal abundance. Conservation and management of GBR macrophytes and their ecosystems is hampered by scarce ecological knowledge across macrophyte community types. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The study evaluated the effects of herbivory pressure, nutrient availability and potential propagule supply on recruitment and succession of coral reef macroalgal communities. Recruitment and succession tiles were placed in a nutrient-herbivory factorial experiment and macroalgal abundances were evaluated through time. Proportional abundances of macroalgal form-functional groups on recruitment and succession tiles were similar to field established communities within treatments, evidencing possible effects of adult macroalgae as propagule supply. Macroalgal abundance of recruitment tiles increased with nutrient loading and herbivory reduction combined whereas on succession tiles nutrient loading increased abundance of articulated-calcareous only when herbivores were excluded. Macroalgal field established communities were only affected by herbivory reduction.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are strongly affected by season.
Resumo:
The abundance of calcareous green algae was recorded quarterly at 28 sites within the Florida Keys National Marine Sanctuary (FKNMS) for a period of 7 years as part of a sea grass monitoring program. To evaluate the validity of using the functional-form group approach, we designed a sampling method that included the functional-form group and the component genera. This strategy enabled us to analyze the spatiotemporal patterns in the abundance of calcareous green algae as a group and to describe synchronous behavior among its genera through the application of a nonlinear regression model to both categories of data. Spatial analyses revealed that, in general, all genera displayed long-term trends of increasing abundance at most sites; however, at some sites the long-term trends for genera opposed one another. Strong synchrony in the timing of seasonal changes was found among all genera, possibly reflecting similar reproductive and seasonal growth pattern, but the variability in the magnitude of seasonal changes was very high among genera and sites. No spatial patterns were found in long-term or seasonal changes; the only significant relation detected was for slope, with sites closer to land showing higher values, suggesting that some factors associated with land proximity are affecting this increase. We conclude that the abundances of genera behaved differently from the functional-form group, indicating that the use of the functionalform group approach may be unsuitable to detect changes in sea grass community structure in the FKNMS at the existing temporal and spatial scale of the monitoring program.
Resumo:
Conhecer o Mar dos Açores. Fórum Científico de Apoio à Decisão, Horta, 19 de Janeiro de 2011.
Resumo:
Jornadas "Ciência nos Açores – que futuro?", Ponta Delgada, 7-8 de Junho de 2013.
Resumo:
Macroalgae are the main primary producers of the temperate rocky shores providing a three-dimensional habitat, food and nursery grounds for many other species. During the past decades, the state of the coastal waters has deteriorated due to increasing human pressures, resulting in dramatic changes in coastal ecosystems, including macroalgal communities. To reverse the deterioration of the European seas, the EU has adopted the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD), aiming at improved status of the coastal waters and the marine environment. Further, the Habitats Directive (HD) calls for the protection of important habitats and species (many of which are marine) and the Maritime Spatial Planning Directive for sustainability in the use of resources and human activities at sea and by the coasts. To efficiently protect important marine habitats and communities, we need knowledge on their spatial distribution. Ecological knowledge is also needed to assess the status of the marine areas by involving biological indicators, as required by the WFD and the MSFD; knowledge on how biota changes with human-induced pressures is essential, but to reliably assess change, we need also to know how biotic communities vary over natural environmental gradients. This is especially important in sea areas such as the Baltic Sea, where the natural environmental gradients create substantial differences in biota between areas. In this thesis, I studied the variation occurring in macroalgal communities across the environmental gradients of the northern Baltic Sea, including eutrophication induced changes. The aim was to produce knowledge to support the reliable use of macroalgae as indicators of ecological status of the marine areas and to test practical metrics that could potentially be used in status assessments. Further, the aim was to develop a methodology for mapping the HD Annex I habitat reefs, using the best available data on geology and bathymetry. The results showed that the large-scale variation in the macroalgal community composition of the northern Baltic Sea is largely driven by salinity and exposure. Exposure is important also on smaller spatial scales, affecting species occurrence, community structure and depth penetration of algae. Consequently, the natural variability complicates the use of macroalgae as indicators of human-induced changes. Of the studied indicators, the number of perennial algal species, the perennial cover, the fraction of annual algae, and the lower limit of occurrence of red and brown perennial algae showed potential as usable indicators of ecological status. However, the cumulated cover of algae, commonly used as an indicator in the fully marine environments, showed low responses to eutrophication in the area. Although the mere occurrence of perennial algae did not show clear indicator potential, a distinct discrepancy in the occurrence of bladderwrack, Fucus vesiculosus, was found between two areas with differing eutrophication history, the Bothnian Sea and the Archipelago Sea. The absence of Fucus from many potential sites in the outer Archipelago Sea is likely due to its inability to recover from its disappearance from the area 30-40 years ago, highlighting the importance of past events in macroalgal occurrence. The methodology presented for mapping the potential distribution and the ecological value of reefs showed, that relatively high accuracy in mapping can be achieved by combining existing available data, and the maps produced serve as valuable background information for more detailed surveys. Taken together, the results of the theses contribute significantly to the knowledge on macroalgal communities of the northern Baltic Sea that can be directly applied in various management contexts.
Resumo:
We examined the ecological distribution of macroalgal communities in streams using species groups (taxonomic units = algal phyla, and morphological = morphological types) with similar structures and functions instead of the species themselves. The study was conducted from June to July/2007 in two drainage basins located in mid-southern region of Paraná State , Brazil. Evaluations of macroalgal communities took into consideration the following spatial scales: the drainage basin (the Pedras river and Marrecas river basins), shading regime (open and shaded stream segments), mesohabitats (riffles and pools), and microhabitats (sampling units of 0.05m2). A total of 29 taxa (23 subgeneric, one generic, and five vegetative groups) were identified. On these, 12 taxa belong to Chlorophyta, 11 to Cyanobacteria, four to Heterokontophyta, and two to Rhodophyta. The proportions of morphological types were: 24% free filaments, 17.25% mats, tufts, gelatinous colonies, and gelatinous filaments, 7% crusts. In terms of spatial scales, we observed a predominance of Chlorophyta in open stream segments and Cyanobacteria in shaded stream segments, reflecting the loss of competitive advantage of green algae in sites with low energy availability. In the mesohabitats, the morphological types recorded in pools were predominantly poorly adapted to fast currents (free filaments), while those found in riffles (mats, tufts and gelatinous filaments) were highly resistant to fast water flows. As such, the use of species groupings based on algal taxonomy associated with morphological characteristics proved to be useful to understanding the distributions of these organisms in lotic environments.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)