950 resultados para submarine pipeline


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The initiation of pipeline spanning involves the coupling between the flow over the pipeline and the seepage-flow in the soil underneath the pipeline. The pipeline spanning initiation is experimentally observed and discussed in this article. It is qualitatively indicated that the pressure-drop induced soil seepage failure is the predominant cause for pipeline spanning initiation. A flow-pipe-seepage sequential coupling Finite Element Method (FEM) model is proposed to simulate the coupling between the water flow-field and the soil seepage-field. A critical hydraulic gradient is obtained for oblique seepage failure of the sand in the direction tangent to the pipe. Parametric study is performed to investigate the effects of inflow velocity, pipe embedment on the pressure-drop, and the effects of soil internal friction angle and pipe embedment-to-diameter ratio on the critical flow velocity for pipeline spanning initiation. It is indicated that the dimensionless critical flow velocity changes approximately linearly with the soil internal friction angle for the submarine pipeline partially-embedded in a sandy seabed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article, a model for the determination of displacements, strains, and stresses of a submarine pipeline during its construction is presented. Typically, polyethylene outfall pipelines are the ones treated by this model. The process is carried out from an initial floating situation to the final laying position on the seabed. The following control variables are considered in the laying process: the axial load in the pipe, the flooded inner length, and the distance of the control barge from the coast. External loads such as self-weight, dead loads, and forces due to currents and small waves are also taken into account.This paper describes both the conceptual framework for the proposed model and its practical application in a real engineering situation. The authors also consider how the model might be used as a tool to study how sensitive the behavior of the pipeline is to small changes in the values of the control variables. A detailed description of the actions is considered, especially the ones related to the marine environment such as buoyancy, current, and sea waves. The structural behavior of the pipeline is simulated in the framework of a geometrically nonlinear dynamic analysis. The pipeline is assumed to be a two-dimensional Navier_Bernoulli beam. In the nonlinear analysis an updated Lagrangian formulation is used, and special care is taken regarding the numerical aspects of sea bed contact, follower forces due to external water pressures, and dynamic actions. The paper concludes by describing the implementation of the proposed techniques, using the ANSYS computer program with a number of subroutines developed by the authors. This implementation permits simulation of the two-dimensional structural pipe behavior of the whole construction process. A sensitivity analysis of the bending moments, axial forces, and stresses for different values of the control variables is carried out. Using the techniques described, the engineer may optimize the construction steps in the pipe laying process

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article, a model for the determination of displacements, deformations and tensions of a submarine pipeline during the construction is presented. The process is carried out from an initial floating situation to the final laying position on the seabed. The existence of currents and small waves are also considered. Firstly, this technique, usually applied to polyethylene pipelines, is described in this paper as well as some real world examples, as well as the variables that can be modified to control the behavior of the structure. A detailed description of the actions in this process is considered, specially the ones related to marine environment, as Archimedes force, current and sea waves. The behavior of the pipeline is modeled with a non linear elasto dynamic model where geometric non linearities are taken into account. A 3-D beam model, without cross section deformation effects, is developed. Special care is taken in the numerical analysis, developed within an updated lagrangian formulation framework, with the sea bed contact, the follower forces due to the external water pressures and the dynamic actions. Finally, some subroutines are implemented into ANSYS to simulate the two dimensional case, where the whole construction process is achieved. With this software, a sensibility analysis of the bending moments, axial forces and stresses obtained with different values of the control variables in order to optimize the construction steps. These control variables are, the axial load in the pipe, the inundated inner length and the distance of the control barge from the coast.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

考虑海床刚度,研究了埋设悬跨海底管道在热膨胀引起的轴向压力下的屈曲问题。传统方法是将悬跨管道简化为两端简支或者两端固支梁来处理。基于欧拉.伯努利梁理论,考虑线弹性海床刚度和轴向压力,建立并求解了埋设段管道和悬跨段管道在自重作用下的四阶常微分方程,获得了两段管道的静挠度和内力的解析公式。通过对静挠度的特性分析,给出了埋设管道段和悬跨管道段的稳定性判断准则。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a series of experiments have been conducted in a U-shaped oscillatory flow tunnel, which provides a more realistic simulation than the previous actuator loading methods. Based on the experimental data of pipe displacement with two different constraint conditions (freely laid pipelines and anti-rolling pipelines), three characteristic times in the process of pipeline losing stability are identified. The effects of sand size on the pipeline lateral stability are examined for freely laid pipelines. The empirical relationships between non-dimensional pipeline weight (G) and Fronde number (Fr-b) are established for different constraint conditions, which will provide a guide for engineering practice. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用量纲分析法建立了海底管道局部冲刷的相似准则,利用模型实验研究了管道局部冲刷的物理过程,以及极限平衡冲刷深度的影响因素。实验观测发现,对于初始嵌入深度较小的管道而言,局部冲刷一般可分为管道悬空、间隙冲刷、尾迹冲刷和平衡冲刷四个特征阶段。在亚临界流动范围内,管道极限平衡冲刷深度与雷诺数的相关性较小。在清水冲刷条件下,无量纲极限平衡冲刷深度随希尔兹数的增加而增大;在所研究的初始间隙比范围内(-0.25〈e_0/D〈0.55),极限平衡冲刷深度与初始间隙比之间大致呈线性递减关系。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

针对裸露悬跨海底管道,考虑线弹性海床刚度,利用梁的小挠度理论,研究管道在自重作用下的变形和内力,推导给出了未脱离海床的管道段和悬跨管道段的变形和内力公式。在跨度较大的悬跨情况下,悬跨管道段较大的向下弯曲变形可能引起海床上管道脱离海床而翘起。建立管道翘起的判定准则,对于翘起情况推导相应的计算公式,通过算例给出翘起情况下管道的变形和内力。通过计算分析发现:工程上多数悬跨是翘起情况,没有翘起的计算公式只适应于跨度较小的悬跨管道。同时翘起情况下不同海床刚度对悬跨管道无量纲内力影响不大。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

海底管线的稳定性是保证油气输送管道正常运行的关键。本文通过研制开发计算管土相互作用的有限元程序,对管土相互作用进行数值模拟,分析管道在自重和环境荷载作用下在砂质海床中的沉降发展,分析影响土体对管道的侧向阻力的各种因素,以便为管道稳定性设计提供参考。采用二维非线性有限元计算技术,计算管道在自重、静水压力和环境荷载的作用下土体的静态响应,以土的临界破坏状态作为管土系统的稳定性的极限状态,分析管道-土体这一对类似挡土结构-土体力学系统在临界状态时的相互作用。通过对计算结果的分析和有关文献试验结果的比较,证明了该程序基本上能够正确地完成关于土的非线性特征、管道自沉降的发展过程和管土系统的相互作用等数值模拟任务,从而为深入研究管土的非线性相互作用和管土相互作用对管道的在位稳定性的影响提供了思路和有力的分析工具。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

针对南海北部海域特点建立了模拟该区域小尺度沙波运移过程的准三维力学模型.以多波束海底地貌扫描数据和水文资料为基础,预测了研究区域沙波的运移,其结果在沙脊脊沟处与实际观测一致,而在脊背上与实际观测值存在差异.分析表明,本文所提出的物理模型可以用于预测南海海域以推移质泥沙运动为主的小尺度沙波运移规律.这一结果对该区域海底管线等工程设计是很有意义的.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

According to the environmental characteristic of the north gulf of South China Sea, a quasi-3D mechanics model has been built for simulating the small scale sand-waves migration in the seas of southwest of Hainan Island. Based on the submarine micro-geomorphic data induced by multi-beam system and hydrographic survey record, the migrations of the sand-waves in the study area are predicted. The results show that calculation is consistent with the observation data in the groove of sand ridge, but not well in the crest of sand ridge. It is indicated that the mechanics model should be used to predict the migration of the small scale sand-waves which are dominated by bed load in the seas. This paper is very meaningful to project the route of submarine pipeline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Submarine pipelines are always trenched within a seabed for reducing wave loads and thereby enhancing their stability. Based on Biot’s poroelastic theory, a two-dimensional finite element model is developed to investigate non-linear wave-induced responses of soil around a trenched pipeline, which is verified with the flume test results by Sudhan et al. [Sudhan, C.M., Sundar, V., Rao, S.N., 2002. Wave induced forces around buried pipeline. Ocean Engineering, 29, 533–544] and Turcotte et al. [Turcotte, B.R., Liu, P.L.F., Kulhawy, F.H., 1984. Laboratory evaluation of wave tank parameters for wave-sediment interaction. Joseph H. Defree Hydraulic Laboratory Report 84-1, School of Civil and Environmental Engineering, Cornell University]. Non-linear wave-induced transient pore pressure around pipeline at various phases of wave loading is examined firstly. Unlike most previous investigations, in which only a single sediment layer and linear wave loading were concerned, in this study, the influences of the non-linearity of wave loading, the physical properties of backfill materials and the geometry profile of trenches on the excess pore pressures within the soil around pipeline, respectively, were explored, taking into account the in situ conditions of buried pipeline in the shallow ocean zones. Based on the parametric study, it is concluded that the shear modulus and permeability of backfill soils significantly affect the wave-induced excess pore pressures around trenched pipeline, and that the effect of wave non-linearity becomes more pronounced and comparable with that of trench depth, especially at high wave steepness in shallow water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to understand the dynamic behavior of submarine pipelines exposed to current and the mechanism of the interaction between current-induced vibration and scour of pipelines on a sandy bottom, an experimental investigation is conducted with a small scale model A test model which can be tested in the flume is set up by taking into account the typical working conditions of the pipelines and by applying the similarity theory. The interactions between the shape of the scour hole and the behavior of the pipeline as well as the flow patterns of the current are detailed, and the interaction mechanism outlined. The effect of vibration of the pipeline on the development of dynamic scour at different stages is found out. The proposed experimental method and test results provide an effective means for design of marine pipelines against scouring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slip-line field solutions are presented for the ultimate load of submarine pipelines on a purely cohesive soil obeying Tresca yield criterion, taking into account of pipe embedment and pipe-soil contact friction. The derived bearing capacity factors for a smooth pipeline degenerate into those for the traditional strip-line footing when the embedment approaches zero. Parametric studies demonstrate that the bearing capacity factors for pipeline foundations are significantly influenced by the pipeline embedment and the pipe-soil frictional coefficient. With the increase of pipeline embedment, the bearing capacity factor Nc decreases gradually, and finally reaches the minimum value (4.0) when the embedment equals to pipeline radius. As such, if the pipeline is directly treated as a traditional strip footing, the bearing capacity factor Nc would be over evaluated. The ultimate bearing loads increase with increasing pipeline embedment and pipe-soil frictional coefficient.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador: