989 resultados para street network
Resumo:
Fourth-century a.d. chalk tesserae from Roman Leicester (Ratae Corieltavorum) yield rich microfossil assemblages that identify a biostratigraphical age of Cretaceous Late Cenomanian to Early Turonian. The nearest chalk outcrops to Leicester lie in Hertfordshire, Lincolnshire, Yorkshire and north Norfolk, indicating that the material for the tesserae must have been sourced remotely and transported to Ratae. Superimposing the Roman road network onto a map of the relevant Chalk Group distribution provides a guide to possible sources. A process of evaluation identifies Baldock in Hertfordshire and Bridlington in Yorkshire as the most likely sources for the Leicester tesserae.
Resumo:
The idea for organizing a cooperative market on Waterville Main Street was proposed by Aime Schwartz in the fall of 2008. The Co-op would entail an open market located on Main Street to provide fresh, local produce and crafts to town locals. Through shorter delivery distances and agreements with local farmers, the co-op theoretically will offer consumers lower prices on produce than can be found in conventional grocery stores, as well as an opportunity to support local agriculture. One of the tasks involved with organizing the Co-op is to source all of the produce from among the hundreds of farmers located in Maine. The purpose of this project is to show how Geographic Information System (GIS) tools can be used to help the Co-op and other businesses a) site nearby farms that carry desired produce and products, and b) determine which farms are closest to the business site. Using GIS for this purpose will make it easier and more efficient to source produce suppliers, and reduce the workload on business planners. GIS Network Analyst is a tool that provides network-based spatial analysis, and can be used in conjunction with traditional GIS technologies to determine not only the geometric distance between points, but also distance over existing networks (like roads). We used Network Analyst to find the closest produce suppliers to the Co-op for specific produce items, and compute how far they are over existing roads. This will enable business planners to source potential suppliers by distance before contacting individual farmers, allowing for more efficient use of their time and a faster planning process.
Resumo:
Il progetto ArtMap! mette a disposizione un applicativo user, destinato agli utenti, che tramite una struttura a social network, propone una mappatura globale di street art. Viene messo a disposizione un archivio di informazioni, aggiornate direttamente dagli utenti, relative a opere ed artisti e la possibilità di creare itinerari personali. Inoltre, è stato sviluppato un applicativo di supporto per la convalidazione delle informazioni inserite dagli utenti, destinato ai gestori del database di informazioni.
Resumo:
Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our nation’s highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.
Resumo:
Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our national highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.
Resumo:
An integrated method for the prediction of the spatial pollution distribution within a street canyon directly from a microscopic traffic simulation model is outlined. The traffic simulation package Paramics is used to model the flow of vehicles in realistic traffic conditions on a real road network. This produces details of the amount of pollutant produced by each vehicle at any given time. The authors calculate the dispersion of the pollutant using a particle tracking diffusion method which is superimposed on a known velocity and turbulence field. This paper shows how these individual components may be integrated to provide a practical street canyon pollution model. The resulting street canyon pollution model provides isoconcentrations of pollutant within the road topography.