986 resultados para stream function-vorticity-current density


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laminar two-dimensional sudden expansion flow of different nanofluids is studied numerically. The governing equations are solved using stream function-vorticity method. The effect of volume fraction of the nanoparticles and type of nanoparticles on flow behaviour is examined and found significant impact. The flow response to Reynolds number in the presence of nanoparticles is examined. The presence of nanoparticles decreases the flow bifurcation Reynolds number. The size and the reattachment length of the bottom wall recirculation increase with increasing volume fraction and particle density. The effect of volume fraction and density of nanoparticles on friction factor is reported. The bottom wall recirculation strongly respond to the variation in volume faction and type of particles. However, weak response is observed for top wall recirculation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soluble lead acid redox flow battery (SLRFB) offers a number of advantages. These advantages can be harnessed after problems associated with buildup of active material on. electrodes (residue) are resolved. A mathematical model is developed to understand residue formation in SLRFB. The model incorporates fluid flow, ion transport, electrode reactions, and non-uniform current distribution on electrode surfaces. A number of limiting cases are studied to conclude that ion transport and electrode reaction on anode simultaneously control battery performance. The model fits the reported cell voltage vs. time profiles very well. During the discharge cycle, the model predicts complete dissolution of deposited material from trailing edge side of the electrodes. With time, the active surface area of electrodes decreases rapidly. The corresponding increase in current density leads to precipitous decrease in cell potential before all the deposited material is dissolved. The successive charge-discharge cycles add to the residue. The model correctly captures the marginal effect of flow rate on cell voltage profiles, and identifies flow rate and flow direction as new variables for controlling residue buildup. Simulations carried out with alternating flow direction and a SLRFB with cylindrical electrodes show improved performance with respect to energy efficiency and residue buildup. (C) 2014 The Electrochemical Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two different soft-chemical, self-assembly-based solution approaches are employed to grow zinc oxide (ZnO) nanorods with controlled texture. The methods used involve seeding and growth on a substrate. Nanorods with various aspect ratios (1-5) and diameters (15-65 nm) are grown. Obtaining highly oriented rods is determined by the way the substrate is mounted within the chemical bath. Furthermore, a preheat and centrifugation step is essential for the optimization of the growth solution. In the best samples, we obtain ZnO nanorods that are almost entirely oriented in the (002) direction; this is desirable since electron mobility of ZnO is highest along this crystallographic axis. When used as the buffer layer of inverted organic photovoltaics (I-OPVs), these one-dimensional (1D) nanostructures offer: (a) direct paths for charge transport and (b) high interfacial area for electron collection. The morphological, structural, and optical properties of ZnO nanorods are studied using scanning electron microscopy, X-ray diffraction, and ultraviolet-visible light (UV-vis) absorption spectroscopy. Furthermore, the surface chemical features of ZnO films are studied using X-ray photoelectron spectroscopy and contact angle measurements. Using as-grown ZnO, inverted OPVs are fabricated and characterized. For improving device performance, the ZnO nanorods are subjected to UV-ozone irradiation. UV-ozone treated ZnO nanorods show: (i) improvement in optical transmission, (ii) increased wetting of active organic components, and (iii) increased concentration of Zn-O surface bonds. These observations correlate well with improved device performance. The devices fabricated using these optimized buffer layers have an efficiency of similar to 3.2% and a fill factor of 0.50; this is comparable to the best I-OPVs reported that use a P3HT-PCBM active layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micro-arc oxidation (MAO) coatings were prepared on AZ31B magnesium alloy using alkaline silicate electrolyte at different current densities (0.026, 0.046 and 0.067 A/cm(2)). Field Emission Scanning Electron Microscopy (FESEM) analysis of the coating revealed an irregular porous structure with cracked morphology. Compositional analysis carried out for MAO coating showed the presence of almost an equal amount of Mg and 0 (34 wt.%) apart from other elements such as F, Si and AI. The cross-sectional FESEM images clearly portrayed that the MAO coating was dense along with the presence of very few fine pores. The surface roughness (R-a) of the coatings increased with an increase in the current density. Potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies were carried out for both the bare and MAO coated AZ31B Mg alloy in 3.5% NaCl solution. The corrosion potential (E-corr) and corrosion current density (i(corr)) values obtained for the bare substrate were -1.49 V and 46 mu A/cm(2), respectively. The coating prepared at 0.046 A/cm(2) exhibited the lowest i(corr) value of 7.79 x 10(-10) A/cm(2) and highest polarization resistance (41.6 M Omega cm(2)) attesting to the better corrosion resistance of the coating compared to other samples. EIS results also indicated almost similar corrosion behavior for the MAO coatings. Mott-Schottky analysis showed n-type and p-type semiconductor behavior for the oxide layer present on the bare magnesium alloy and MAO coatings respectively. (C) 2016 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma electrolytic oxidation coatings were produced on AM50 Mg alloy in alkaline phosphate based electrolyte with montmorillonite clay additives employing current densities of 30, 60, and 120 mA/cm(2). The effect of current density on the microstructure and corrosion properties of the coating was investigated. The clay additives got melted and reactively incorporated into the coating forming an amorphous phase, at all the current densities. However, the coating was predominantly amorphous only at 30 mA/cm(2) and with increasing current density, increasing fractions of crystalline phases were formed. Higher current densities resulted in increased thickness of the coating, but reduced the compactness of the coatings. Electrochemical impedance spectroscopy tests in 0.5 wt.% (0.08 M) and 3.5 wt.% (0.6 M) NaCl solution revealed that the coatings processed at 30 mA/cm(2) exhibited a relatively better initial corrosion resistance owing to its relatively defect-free barrier layer and compactness of the coating. However, the presence of amorphous phases in significant amounts and lack of MgO in the coating resulted in increased rate of dissolution of the coatings and degradation of corrosion resistance. Coatings produced at higher current densities exhibited initial inferior corrosion resistance due to a more defective barrier layer and increased porosity in pore band and outer porous layer. However, the increased amount of crystalline phases and an increased amount of MgO, which resisted dissolution, counterbalanced the negative effects of defective barrier and increased porosity resulting in a relatively lower rate of the degradation of the corrosion resistance. Thus, the corrosion resistance of all the coatings continuously decreased with time and became similar after prolonged immersion in NaCl solution. Increasing current density, therefore, did not prove to be beneficial for the improvement of the corrosion performance of the PEO coatings. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, polymer diode performance was analyzed by using nickel as anode electrode from two kinds of nickel as starting materials, namely nickel wire Ni{B} and nickel nano-particle Ni{N}. Metal electrode surface roughness and grain morphology were investigated by atomic force microscope and scanning electron microscope, respectively. Current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured for the fabricated device at room temperature. Obtained result from the current-voltage characteristics shows an increment in the current density for nickel nano-particle top electrode device. The increase in the current density could be due to a reduction in built-in voltage at P3HT/Ni{N} interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aims: In diabetic ventricular myocytes, transient outward potassium current (I-to) amplitude is severely reduced because of the impaired catecholamine release that characterizes diabetic autonomic neuropathy. Sympathetic nervous system exhibits a trophic effect on I-to since incubation of myocytes with noradrenaline restores current amplitude via beta-adrenoceptor (beta AR) stimulation. Here, we investigate the intracellular signalling pathway though which incubation of diabetic cardiomyocytes with the beta AR agonist isoproterenol recovers I-to amplitude to normal values. Methods: Experiments were performed in ventricular myocytes isolated from streptozotocin-diabetic rats. I-to current was recorded by using the patch-clamp technique. Kv4 channel expression was determined by immunofluorescence. Protein-protein interaction was determined by coimmunoprecipitation. Results: Stimulation of beta AR activates first a G alpha s protein, adenylyl cyclase and Protein Kinase A. PKA-phosphorylated receptor then switches to the G alpha i protein. This leads to the activation of the beta AR-Kinase-1 and further receptor phosphorylation and arrestin dependent internalization. The internalized receptor-arrestin complex recruits and activates cSrc and the MAPK cascade, where Ras, c-Raf1 and finally ERK1/2 mediate the increase in Kv4.2 and Kv4.3 protein abundance in the plasma membrane. Conclusion: beta(2)AR stimulation activates a G alpha s and G alpha i protein dependent pathway where the ERK1/2 modulates the Ito current amplitude and the density of the Kv4.2 and Kv4.2 channels in the plasma membrane upon sympathetic stimulation in diabetic heart.