994 resultados para stream (river)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fishes of the present study were collected in Passa Cinco stream, a main river of Corumbatai river basin, Tiete drainage. Five sites were selected in that stream, downstream from headwater to its mouth, and six samplings were performed using the following fishery equipment: a sieve, electric fishery equipment, gill nets and fish-traps. 5082 individuals, 62 species, 18 families and 6 orders were captured. The orders Characiformes and Siluriformes were the most representative and the families Characidae and Loricariidae presented the largest in number of species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In-stream structures including cross-vanes, J-hooks, rock vanes, and W-weirs are widely used in river restoration to limit bank erosion, prevent changes in channel gradient, and improve aquatic habitat. During this investigation, a rapid assessment protocol was combined with post-project monitoring data to assess factors influencing the performance of more than 558 in-stream structures and rootwads in North Carolina. Cross-sectional survey data examined for 221 cross sections from 26 sites showed that channel adjustments were highly variable from site to site, but approximately 60 % of the sites underwent at least a 20 % net change in channel capacity. Evaluation of in-stream structures ranging from 1 to 8 years in age showed that about half of the structures were impaired at 10 of the 26 sites. Major structural damage was often associated with floods of low to moderate frequency and magnitude. Failure mechanisms varied between sites and structure types, but included: (1) erosion of the channel bed and banks (outflanking); (2) movement of rock materials during floods; and (3) burial of the structures in the channel bed. Sites with reconstructed channels that exhibited large changes in channel capacity possessed the highest rates of structural impairment, suggesting that channel adjustments between structures led to their degradation of function. The data question whether currently used in-stream structures are capable of stabilizing reconfigured channels for even short periods when applied to dynamic rivers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Spine title: Waste-assimilation capacity of the Arkansas River, Pueblo County, Colorado.