982 resultados para strand displacement


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A minor groove binder (MGB) derivative (N-3-carbamoyl-1,2-dihydro-3H-pyrrolo[3,2-e]indole-7-carboxylate tripeptide; CDPI3) was covalently linked to the 5' or 3' end of several oligodeoxyribonucleotides (ODNs) totally complementary or possessing a single mismatch to M13mp19 single-stranded DNA. Absorption thermal denaturation and slot-blot hybridization studies showed that conjugation of CDPI3 to these ODNs increased both the specificity and the strength with which they hybridized. Primer extension of the same phage DNA by a modified form of phage T7 DNA polymerase (Sequenase) was physically blocked when a complementary 16-mer with a conjugated 5'-CDPI3 moiety was hybridized to a downstream site. Approximately 50% of the replicating complexes were arrested when the blocking ODN was equimolar to the phage DNA. Inhibition was unaffected by 3'-capping of the ODN with a hexanol group or by elimination of a preannealing step. Blockage was abolished when a single mismatch was introduced into the ODN or when the MGB was either removed or replaced by a 5'-acridine group. A 16-mer with a 3'-CDPI3 moiety failed to arrest primer extension, as did an unmodified 32-mer. We attribute the exceptional stability of hybrids formed by ODNs conjugated to a CDPI3 to the tethered tripeptide binding in the minor groove of the hybrid. When that group is linked to the 5' end of a hybridized ODN, it probably blocks DNA synthesis by inhibiting strand displacement. These ODNs conjugated to CDPI3 offer attractive features as diagnostic probes and antigene agents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To elucidate the mechanism of recognition of double-stranded DNA (dsDNA) by homopyrimidine polyamide ("peptide") nucleic acid (PNA) leading to the strand-displacement, the kinetics of the sequence-specific PNA/DNA binding have been studied. The binding was monitored with time by the gel retardation and nuclease S1 cleavage assays. The experimental kinetic curves obey pseudo-first-order kinetics and the dependence of the pseudo-first-order rate constant, kps, on PNA concentration, P, obeys a power law kps approximately P gamma with 2 < gamma < 3. The kps values for binding of decamer PNA to dsDNA target sites with one mismatch are hundreds of times slower than for the correct site. A detailed kinetic scheme for PNA/DNA binding is proposed that includes two major steps of the reaction of strand invasion: (i) a transient partial opening of the PNA binding site on dsDNA and incorporation of one PNA molecule with the formation of an intermediate PNA/DNA duplex and (ii) formation of a very stable PNA2/DNA triplex. A simple theoretical treatment of the proposed kinetic scheme is performed. The interpretation of our experimental data in the framework of the proposed kinetic scheme leads to the following conclusions. The sequence specificity of the recognition is essentially provided at the "search" step of the process, which consists in the highly reversible transient formation of duplex between one PNA molecule and the complementary strand of duplex DNA while the other DNA strand is displaced. This search step is followed by virtually irreversible "locking" step via PNA2/DNA triplex formation. The proposed mechanism explains how the binding of homopyrimidine PNA to dsDNA meets two apparently mutually contradictory features: high sequence specificity of binding and remarkable stability of both correct and mismatched PNA/DNA complexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nucleic acid amplification tests (NAATs) for the detection of Neisseria gonorrhoeae became available in the early 1990s. Although offering several advantages over traditional detection methods, N. gonorrhoeae NAATs do have some limitations. These include cost, risk of carryover contamination, inhibition, and inability to provide antibiotic resistance data. In addition, there are sequence-related limitations that are unique to N. gonorrhoeae NAATs. In particular, false-positive results are a major consideration. These primarily stem from the frequent horizontal genetic exchange occurring within the Neisseria genus, leading to commensal Neisseria species acquiring N. gonorrhoeae genes. Furthermore, some N. gonorrhoeae subtypes may lack specific sequences targeted by a particular NAAT. Therefore, NAAT false-negative results because of sequence variation may occur in some gonococcal populations. Overall, the N. gonorrhoeae species continues to present a considerable challenge for molecular diagnostics. The need to evaluate N. gonorrhoeae NAATs before their use in any new patient population and to educate physicians on the limitations of these tests is emphasized in this review.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nucleic Acid hairpins have been a subject of study for the last four decades. They are composed of single strand that is

hybridized to itself, and the central section forming an unhybridized loop. In nature, they stabilize single stranded RNA, serve as nucleation

sites for RNA folding, protein recognition signals, mRNA localization and regulation of mRNA degradation. On the other hand,

DNA hairpins in biological contexts have been studied with respect to forming cruciform structures that can regulate gene expression.

The use of DNA hairpins as fuel for synthetic molecular devices, including locomotion, was proposed and experimental demonstrated in 2003. They

were interesting because they bring to the table an on-demand energy/information supply mechanism.

The energy/information is hidden (from hybridization) in the hairpin’s loop, until required.

The energy/information is harnessed by opening the stem region, and exposing the single stranded loop section.

The loop region is now free for possible hybridization and help move the system into a thermodynamically favourable state.

The hidden energy and information coupled with

programmability provides another functionality, of selectively choosing what reactions to hide and

what reactions to allow to proceed, that helps develop a topological sequence of events.

Hairpins have been utilized as a source of fuel for many different DNA devices. In this thesis, we program four different

molecular devices using DNA hairpins, and experimentally validate them in the

laboratory. 1) The first device: A

novel enzyme-free autocatalytic self-replicating system composed entirely of DNA that operates isothermally. 2) The second

device: Time-Responsive Circuits using DNA have two properties: a) asynchronous: the final output is always correct

regardless of differences in the arrival time of different inputs.

b) renewable circuits which can be used multiple times without major degradation of the gate motifs

(so if the inputs change over time, the DNA-based circuit can re-compute the output correctly based on the new inputs).

3) The third device: Activatable tiles are a theoretical extension to the Tile assembly model that enhances

its robustness by protecting the sticky sides of tiles until a tile is partially incorporated into a growing assembly.

4) The fourth device: Controlled Amplification of DNA catalytic system: a device such that the amplification

of the system does not run uncontrollably until the system runs out of fuel, but instead achieves a finite

amount of gain.

Nucleic acid circuits with the ability

to perform complex logic operations have many potential practical applications, for example the ability to achieve point of care diagnostics.

We discuss the designs of our DNA Hairpin molecular devices, the results we have obtained, and the challenges we have overcome

to make these truly functional.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To measure condylar displacement between centric relation (CR) and maximum intercuspation (MIC) in symptomatic and asymptomatic subjects. Materials and Methods: The sample comprised 70 non-deprogrammed individuals, divided equally into two groups, one symptomatic and the other asymptomatic, grouped according to the research diagnostic criteria for temporomandibular disorders (RDC/TMD). Condylar displacement was measured in three dimensions with the condylar position indicator (CPI) device. Dahlberg's index, intraclass correlation coefficient, repeated measures analysis of variance, analysis of variance, and generalized estimating equations were used for statistical analysis. Results: A greater magnitude of difference was observed on the vertical plane on the left side in both symptomatic and asymptomatic individuals (P = .033). The symptomatic group presented higher measurements on the transverse plane (P = .015). The percentage of displacement in the mesial direction was significantly higher in the asymptomatic group than in the symptomatic one (P = .049). Both groups presented a significantly higher percentage of mesial direction on the right side than on the left (P = .036). The presence of bilateral condylar displacement (left and right sides) in an inferior and distal direction was significantly greater in symptomatic individuals (P = .012). However, no statistical difference was noted between genders. Conclusion: Statistically significant differences between CR and MIC were quantifiable at the condylar level in asymptomatic and symptomatic individuals. (Angle Orthod. 2010;80:835-842.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomolecule oxidation promoted by Cu, Zn-superoxide dismutase (SOD1) has been studied because of its potential role in neurodegenerative diseases. We studied the mechanism of DNA damage promoted by the SOD1-H(2)O(2) system. The system promoted the formation of strand breaks in plasmid DNA and the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in calf thymus DNA. We were also able to detect, for the. first time, 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-epsilon dGuo) in calf thymus DNA exposed to SOD1-H(2)O(2). The addition of a copper chelator caused a decrease in the frequency of 8-oxodGuo and 1,N(2)-epsilon dGuo, indicating the participation of copper ions lost from SOD1 active sites. The addition of bicarbonate increased the levels of both DNA lesions. We conclude that copper liberated from SOD1 active sites has a central role in the mechanism of DNA damage promoted by SOD1 in the presence of H(2)O(2), and that bicarbonate can modulate the reactivity of released copper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation aimed at assessing the extent to which memory from practice in a specific condition of target displacement modulates temporal errors and movement timing of interceptive movements. We compared two groups practicing with certainty of future target velocity either in unchanged target velocity or in target velocity decrease. Following practice, both experimental groups were probed in the situations of unchanged target velocity and target velocity decrease either under the context of certainty or uncertainty about target velocity. Results from practice showed similar improvement of temporal accuracy between groups, revealing that target velocity decrease did not disturb temporal movement organization when fully predictable. Analysis of temporal errors in the probing trials indicated that both groups had higher timing accuracy in velocity decrease in comparison with unchanged velocity. Effect of practice was detected by increased temporal accuracy of the velocity decrease group in situations of decreased velocity; a trend consistent with the expected effect of practice was observed for temporal errors in the unchanged velocity group and in movement initiation at a descriptive level. An additional point of theoretical interest was the fast adaptation in both groups to a target velocity pattern different from that practiced. These points are discussed under the perspective of integration of vision and motor control by means of an internal forward model of external motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variability of a fragment of the nucleocapsid gene of orchid fleck virus (OFV) was investigated by single-strand conformational polymorphism (SSCP) analysis and nucleotide sequencing. Forty-eight samples of 18 genera of orchids were collected from Brazil, Costa Rica and Australia. The SSCP analysis yielded six different band patterns, and phylogenetic analysis based on the nucleotide fragment sequence obtained in this work and six available in GenBank showed two different groups, one with isolates 023Germany and So-Japan, and other with the rest of the isolates. None of the analyses showed geographic correlation among the Brazilian strains. The data obtained in this study showed a low genetic variation in this region of the genome; the d(N)/d(S) ratio of 0.251-0.405 demonstrated a negative selective pressure that maintains the stability of the analyzed fragments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tetraalcohol 2,3,5,6-endo,endo,endo,endo-tetrakis(hydroxymethyl]bicyclo[2.2.1]heptane (tetol, 1) has been prepared and crystallises readily as the lithium(I) complex [Li(1)(2)]Cl, forming an oligomeric multi-chain structure in which pairs of alcohols from two crystallographically independent tetol molecules bind lithium ions tetrahedrally. However, formation of monomeric structures in solution is inferred from electrospray mass spectroscopy, which has also shown evidence of exchange of lithium ion in the complexed species by added alkaline earth ions. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection of replicative intermediate RNAs as markers of active replication of RNA viruses is an essential tool to investigate pathogenesis in acute viral infections, as well as in their long-term sequelae. In this regard, strand-specific PCR has been used widely to distinguish (-) and (+) enteroviral RNAs in pathogenesis studies of diseases such as dilated cardiomyopathy. It has been generally assumed that oligonucleotide-primed reverse transcription of a given RNA generates only the corresponding specific cDNA, thus assuring the specificity of a PCR product amplified from it. Nevertheless, such assumed strand-specificity is a fallacy, because falsely primed cDNAs can be produced by RNA reverse transcription in the absence of exogenously added primers, (cDNA(primer)(-)), and such falsely primed cDNAs are amplifiable by PCR in the same way as the correctly primed cDNAs. Using as a prototype the coxsackievirus B5 (CVB5), a (+) strand RNA virus, it was shown that cDNA(primer)(-) renders the differential detection of viral (-) and (+) RNAs by conventional PCR virtually impossible, due to gross non-specificity. Using in vitro transcribed CVB5 RNAs (+) and (-), it was shown that cDNA(primer)(-) could be removed effectively by magnetic physical separation of correctly primed biotinylated cDNA. Such strategy enabled truly strand-specific detection of RNA (-) and (+), not only for CVB5, but also for other non-polio enteroviruses. These findings indicate that previous conclusions supporting a role for the persistence of actively replicating enterovirus in the pathogenesis of chronic myocarditis should be regarded with strong skepticism and purification of correctly primed cDNA should be used for strand-specific PCR of viral RNA in order to obtain reliable information on this important subject. (C) 2009 Elsevier B.V. All rights reserved.