983 resultados para stiffness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. In vitro spine biomechanical testing has been central to many advances in understanding the physiology and pathology of the human spine. Owing to the difficulty in obtaining sufficient numbers of human samples to conduct these studies, animal spines have been accepted as a substitute model. However, it is difficult to compare results from different studies, as they use different preparation, testing and data collection methods. The aim of this study was to identify the effect of repeated cyclic loading on bovine spine segment stiffness. It also aimed to quantify the effect of multiple freeze-thaw sequences, as many tests would be difficult to complete in a single session [1-3]. Materials and Methods. Thoracic spines from 6-8 week old calves were used. Each spine was dissected and divided into motion segments including levels T4-T11 (n=28). These were divided into two equal groups. Each segment was potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37 degrees C and 100% humidity, using moment control to a maximum plus/minus 1.75 Nm with a loading rate of 0.3 Nm per second. Group (A) were tested with continuous repeated cyclic loading for 500 cycles with data recorded at cycles 3, 5, 10, 25, 100, 200, 300, 400 and 500. Group (B) were tested with 10 load cycles after each of 5 freeze thaw sequences. Data was collected from the tenth load cycle after each sequence. Statistical analysis of the data was performed using paired samples t-tests, ANOVA and generalized estimating equations. Results. The data were confirmed as having a normal distribution. 1. There were significant reductions in mean stiffness in flexion/extension (-20%; P=0.001) and lateral bending (-17%; P=0.009) over the 500 load cycles. However, there was no statistically significant change in axial rotation (P=0.152) 2. There was no statistically significant difference between mean stiffness over the five freeze-thaw sequences in flexion/extension (p=0.879) and axial rotation (p=0.07). However, there was a significant reduction in stiffness in lateral bending (-26%; p=0.007) Conclusion. Biomechanical testing of immature bovine spine motion segments requires careful interpretation. The effect of the number of load cycles as well as the number of freeze-thaw cycles on the stiffness of the motion segments depends on the axis of main movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Achieving energy efficient legged locomotion is an important goal for the future of robot mobility. This paper presents a novel joint for legged locomotion that is energy efficient for two reasons. The first reason is the configuration of the elastic elements and actuator which we show analytically has lower energy losses than the typical arrangement. The second is that the joint stiffness, and hence stance duration, is controllable without requiring any energy from the actuator. Further, the joint stiffness can be changed significantly during the flight phase, from zero to highly rigid. Results obtained from a prototype hopper, demonstrate that the joint allows continuous and peak hopping via torque control. The results also demonstrate that the hopping frequency can be varied between 2.2Hz and 4.6Hz with associated stance duration of between 0.35 and 0.15 seconds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method of matching stiffness and continuous variable damping of an ECAS (electronically controlled air suspension) based on LQG (linear quadratic Gaussian) control was proposed to simultaneously improve the road-friendliness and ride comfort of a two-axle school bus. Taking account of the suspension nonlinearities and target-height-dependent variation in suspension characteristics, a stiffness model of the ECAS mounted on the drive axle of the bus was developed based on thermodynamics and the key parameters were obtained through field tests. By determining the proper range of the target height for the ECAS of the fully-loaded bus based on the design requirements of vehicle body bounce frequency, the control algorithm of the target suspension height (i.e., stiffness) was derived according to driving speed and road roughness. Taking account of the nonlinearities of a continuous variable semi-active damper, the damping force was obtained through the subtraction of the air spring force from the optimum integrated suspension force, which was calculated based on LQG control. Finally, a GA (genetic algorithm)-based matching method between stepped variable damping and stiffness was employed as a benchmark to evaluate the effectiveness of the LQG-based matching method. Simulation results indicate that compared with the GA-based matching method, both dynamic tire force and vehicle body vertical acceleration responses are markedly reduced around the vehicle body bounce frequency employing the LQG-based matching method, with peak values of the dynamic tire force PSD (power spectral density) decreased by 73.6%, 60.8% and 71.9% in the three cases, and corresponding reduction are 71.3%, 59.4% and 68.2% for the vehicle body vertical acceleration. A strong robustness to variation of driving speed and road roughness is also observed for the LQG-based matching method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Material yielding is typically modeled either by plastic zone or plastic hinge methods under the context of geometric and material nonlinear finite element methods. In fire analysis of steel structures, the plastic zone method is widely used, but it requires extensively more computational efforts. The objective of this paper is to develop the nonlinear material model allowing for interaction of both axial force and bending moment, which relies on the plastic hinge method to achieve numerical efficiency and reduce computational effort. The biggest advantage of the plastic-hinge approach is its computational efficiency and easy verification by the design code formulae of the axial force–moment interaction yield criterion for beam–column members. Further, the method is reliable and robust when used in analysis of practical and large structures. In order to allow for the effect of catenary action, axial thermal expansion is considered in the axial restraint equations. The yield function for material yielding incorporated in the stiffness formulation, which allows for both axial force and bending moment effects, is more accurate and rational to predict the behaviour of the frames under fire. In the present fire analysis, the mechanical properties at elevated temperatures follow mainly the Eurocode 3 [Design of steel structures, Part 1.2: Structural fire design. European Committee for Standisation; 2003]. Example of a tension member at a steady state heating condition is modeled to verify the proposed spring formulation and to compare with results by others. The behaviour of a heated member in a highly redundant structure is also studied by the present approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very little is known about the infl uence of the mechanical environment on the healing of large segmental defects. This partly reflects the lack of standardised, well characterised technologies to enable such studies. Here we report the design, construction and characterisation of a novel external fixator for use in conjunction with rat femoral defects. This device not only imposes a predetermined axial stiffness on the lesion, but also enables the stiffness to be changed during the healing process. The main frame of the fi xator consists of polyethylethylketone with titanium alloy mounting pins. The stiffness of the fi xator is determined by interchangeable connection elements of different thicknesses. Fixators were shown to stabilise 5 mm femoral defects in rats in vivo for at least 8 weeks during unrestricted cage activity. No distortion or infections, including pin infections, were noted. The healing process was simulated in vitro by inserting into a 5 mm femoral defect, materials whose Young’s moduli approximated those of the different tissues present in regenerating bone. These studies confirmed that, although the external fixator is the major determinant of axial stiffness during the early phase of healing, the regenerate within the lesion subsequently dominates this property. There is much clinical interest in altering the mechanics of the defect to enhance bone healing. Our data suggest that, if alteration of the mechanical environment is to be used to modulate the healing of large segmental defects, this needs to be performed before the tissue properties become dominant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction There is growing interest in the biomechanics of ‘fusionless’ implant constructs used for deformity correction in the thoracic spine. Intervertebral stapling is a leading method of fusionless corrective surgery. Although used for a number of years, there is limited evidence as to the effect these staples have on the stiffness of the functional spinal unit. Materials and Methods Thoracic spines from 6-8 week old calves were dissected and divided into motion segments including levels T4-T11 (n=14). Each segment was potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second. This torque was found sufficient to achieve physiologically representative ranges of movement. The segments were initially tested uninstrumented with data collected from the tenth load cycle. Next a left anterolateral Shape Memory Alloy (SMA) staple was inserted (Medtronic Sofamor Danek, USA). Biomechanical testing was repeated as before with data collected from the tenth load cycle. Results In flexion/extension there was an insignificant drop in stiffness of 3% (p=0.478). In lateral bending there was a significant drop in stiffness of 21% (p<0.001). This was mainly in lateral bending away from the staple, where the stiffness reduced by 30% (p<0.001). This was in contrast to lateral bending towards the staple where it dropped by 12% which was still statistically significant (p=0.036). In axial rotation there was an overall near significant drop in stiffness of 11% (p=0.076). However, this was more towards the side of the staple measuring a decrease of 14% as opposed to 8% away from the staple. In both cases it was a statistically insignificant drop (p=0.134 and p=0.352 respectively). Conclusion Insertion of intervertebral SMA staples results in a significant reduction in motion segment stiffness in lateral bending especially in the direction away from the staple. The staple had less effect on axial rotation stiffness and minimal effect on flexion/extension stiffness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project examined the differences in healing of metaphyseal bone, when the implants of variable stiffness are used for fracture fixation. This knowledge is important in development of novel orthopaedic implants, used in orthopaedic surgery to stabilise the fractures. Dr Koval used a mouse model to create a fracture, and then assessed its healing with a combination of mechanical testing, microcomputed tomography and histomorphometric examination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing interest in the biomechanics of ‘fusionless’ implant constructs used for deformity correction in the thoracic spine, however, there are questions over the comparability of in vitro biomechanical studies from different research groups due to the various methods used for specimen preparation, testing and data collection. The aim of this study was to identify the effect of two key factors on the stiffness of immature bovine thoracic spine motion segments: (i) repeated cyclic loading and (ii) multiple freeze-thaw cycles, to aid in the planning and interpretation of in vitro studies. Two groups of thoracic spine motion segments from 6-8 week old calves were tested in flexion/extension, right/left lateral bending, and right/left axial rotation under moment control. Group (A) were tested with continuous repeated cyclic loading for 500 cycles with data recorded at cycles 3, 5, 10, 25, 50, 100, 200, 300, 400 and 500. Group (B) were tested after each of five freeze-thaw sequences, with data collected from the 10th load cycle in each sequence. Group A: Flexion/extension stiffness reduced significantly over the 500 load cycles (-22%; P=0.001), but there was no significant change between the 5th and 200th load cycles. Lateral bending stiffness decreased significantly (-18%; P=0.009) over the 500 load cycles, but there was no significant change in axial rotation stiffness (P=0.137). Group B: There was no significant difference between mean stiffness over the five freeze-thaw sequences in flexion/extension (P=0.813) and a near significant reduction in mean stiffness in axial rotation (-6%; P=0.07). However, there was a statistically significant increase in stiffness in lateral bending (+30%; P=0.007). Comparison of in vitro testing results for immature thoracic bovine spine segments between studies can be performed with up to 200 load cycles without significant changes in stiffness. However, when testing protocols require greater than 200 cycles, or when repeated freeze-thaw cycles are involved, it is important to account for the effect of cumulative load and freeze-thaw cycles on spine segment stiffness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteogenesis imperfecta (OI) is a heritable disease occurring in one out of every 20,000 births. Although it is known that Type I collagen mutation in OI leads to increased bone fragility, the mechanism of this increased susceptibility to fracture is not clear. The aim of this study was to assess the microstructure of cortical bone fragments from patients with osteogenesis imperfecta (OI) using polarized light microscopy, and to correlate microstructural observations with the results of previously performed mechanical compression tests on bone from the same source. Specimens of cortical bone were harvested from the lower limbs of three (3) OI patients at the time of surgery, and were divided into two groups. Group 1 had been subjected to previous micro-mechanical compression testing, while Group 2 had not been subjected to any prior testing. Polarized light microscopy revealed disorganized bone collagen architecture as has been previously observed, as well as a large increase in the areal porosity of the bone compared to typical values for healthy cortical bone, with large (several hundred micron sized), asymmetrical pores. Importantly, the areal porosity of the OI bone samples in Group 1 appears to correlate strongly with their previously measured apparent Young's modulus and compressive strength. Taken together with prior nanoindentation studies on OI bone tissue, the results of this study suggest that increased intra-cortical porosity is responsible for the reduction in macroscopic mechanical properties of OI cortical bone, and therefore that in vivo imaging modalities with resolutions of ~ 100 μm or less could potentially be used to non-invasively assess bone strength in OI patients. Although the number of subjects in this study is small, these results highlight the importance of further studies in OI bone by groups with access to human OI tissue in order to clarify the relationship between increased porosity and reduced macroscopic mechanical integrity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diaphragm action of crest-fixed profiled steel claddings is present in low-rise buildings whether the designer acknowledges it or not. For the designers to take advantage of the diaphragm strength of the crest-fixed steel claddings in the design of low-rise buildings in a similar manner to valley-fixed claddings, and to design the buildings based on the true behaviour rather than the assumed behaviour, shear/racking behaviour of the three trapezoidal and corrugated steel claddings commonly used at present was investigated using large scale experiments. Crest-fixed claddings (up to a maximum size of 6 x 6.2m) with different aspect ratio and fastening systems were tested to failure, based on which suitable shear strength and stiffness values have been proposed for these claddings as they are used at present. A simple analytical model combined with basic connection data from small scale experiments was used to predict the shear strength of tested panels. Currently attempts are being made to develop general design formulae to determine shear strength and stiffness of crest-fixed steel claddings...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical environment around the healing of broken bone is very important as it determines the way the fracture will heal. Over the past decade there has been great clinical interest in improving bone healing by altering the mechanical environment through the fixation stability around the lesion. One constraint of preclinical animal research in this area is the lack of experimental control over the local mechanical environment within a large segmental defect as well as osteotomies as they heal. In this paper we report on the design and use of an external fixator to study the healing of large segmental bone defects or osteotomies. This device not only allows for controlled axial stiffness on the bone lesion as it heals, but it also enables the change of stiffness during the healing process in vivo. The conducted experiments have shown that the fixators were able to maintain a 5 mm femoral defect gap in rats in vivo during unrestricted cage activity for at least 8 weeks. Likewise, we observed no distortion or infections, including pin infections during the entire healing period. These results demonstrate that our newly developed external fixator was able to achieve reproducible and standardized stabilization, and the alteration of the mechanical environment of in vivo rat large bone defects and various size osteotomies. This confirms that the external fixation device is well suited for preclinical research investigations using a rat model in the field of bone regeneration and repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intervertebral disc withstands large compressive loads (up to nine times bodyweight in humans) while providing flexibility to the spinal column. At a microstructural level, the outer sheath of the disc (the annulus fibrosus) comprises 12–20 annular layers of alternately crisscrossed collagen fibres embedded in a soft ground matrix. The centre of the disc (the nucleus pulposus) consists of a hydrated gel rich in proteoglycans. The disc is the largest avascular structure in the body and is of much interest biomechanically due to the high societal burden of disc degeneration and back pain. Although the disc has been well characterized at the whole joint scale, it is not clear how the disc tissue microstructure confers its overall mechanical properties. In particular, there have been conflicting reports regarding the level of attachment between adjacent lamellae in the annulus, and the importance of these interfaces to the overall integrity of the disc is unknown. We used a polarized light micrograph of the bovine tail disc in transverse cross-section to develop an image-based finite element model incorporating sliding and separation between layers of the annulus, and subjected the model to axial compressive loading. Validation experiments were also performed on four bovine caudal discs. Interlamellar shear resistance had a strong effect on disc compressive stiffness, with a 40% drop in stiffness when the interface shear resistance was changed from fully bonded to freely sliding. By contrast, interlamellar cohesion had no appreciable effect on overall disc mechanics. We conclude that shear resistance between lamellae confers disc mechanical resistance to compression, and degradation of the interlamellar interface structure may be a precursor to macroscopic disc degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was designed to provide the Australian structural radiata pine processing industry with some indications for improving stress grading methods and/or technologies to give an increase in structural grade yields, and significantly reduce processing costs without compromising product quality. To achieve this, advanced statistical techniques were used in conjunction with state-of-the-art property measurement systems applied to the same sample of sawn timber. Acoustic vibration analyses were conducted on green and dry boards. Raw data from existing in-line systems was captured on the same boards. The Metriguard HCLT stress rating system was used as the "reference" machine grading because of its current common use in the industry. A WoodEye optical scanning system and an X-ray LHG scanner were also able to provide relevant information on knots. The data set was analyzed using classical and advanced statistical tools to provide correlations between data sets, and to develop efficient strength and stiffness prediction equations. Reductions in non-structural dry volumes can be achieved..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: As the human body ages, the arteries gradually lose their elasticity and become stiffer. Although inevitable, this process is influenced by hereditary and environmental factors. Interestingly, many classic cardiovascular risk factors affect the arterial stiffness. During the last decade, accelerated arterial stiffening has been recognized as an important cardiovascular risk factor associated with increased mortality as well as with several chronic disorders. Objectives: This thesis examines the role of arterial stiffness in relation to variations in a physiological feature in healthy individuals. In addition, the effect on arterial stiffness of an acute transitory disease and the effect of a chronic disease are studied. Furthermore, the thesis analyzes the prognostic value of a marker of arterial stiffness in individuals with chronic disease. Finally, a potential method of reducing arterial stiffness is evaluated. Material and study design: The first study examines pulse wave reflection and pulse wave velocity in relation to muscle fibre distribution in healthy middle-aged men. In the second study, pulse wave reflection in women with current or previous preeclampsia is compared to a healthy control group. The effect of aging on the different blood pressure indices in patients with type 1 diabetes is examined in the third study, whereas the fourth paper studies the relation between these blood pressure indices and mortality in type 2 diabetes. The fifth study evaluates how intake of a fermented milk product containing bioactive peptides affects pulse wave reflection in individuals with mild hypertension. Results and conclusions: Muscle fibre type distribution is not an independent determinant of arterial stiffness in middle-aged males. Pulse wave reflection is increased in pregnant women with preeclampsia, but not in previously preeclamptic non-pregnant women. Patients with type 1 diabetes have a higher and more rapidly increasing pulse pressure, which suggests accelerated arterial stiffening. In elderly type 2 diabetic patients, very high and very low levels of pulse pressure are associated with higher mortality. Intake of milk-derived bioactive peptides reduces pulse wave reflection in hypertensive males but not in hypertensive females.