997 resultados para stem water potential
Resumo:
Germination of macroconidia and/or microconidia of 24 strains of Fusarium solani, F. chlamydosporum, F. culmorum, F. equiseti, F. verticillioides, F. sambucinum, F. oxysporum and F. proliferatum isolated from fluvial channels and sea beds of the south-eastern coast of Spain, and three control strains (F. oxysporum isolated from affected cultures) was studied in distilled water in response to a range of water potentials adjusted with NaCI. (0, -13.79, -41.79, -70.37, -99.56 and -144.54 bars). The vialibility (UFC/ml) of suspension was also tested in three time periods (0,24 and 48h). Conidia always germinated in distilled water. The pattern of conidial germination obseved of F. verticillioides, F. oxysporum, F. proliferatum, F. chlamydosporum and F. culmorum was similar. A great diminution of spore germination was found in -13.79 bars solutions. Spore germination percentage for F. solani isolates was maximal at 48 h. and -13.79 bars with 21.33% spore germination, 16% higher than germination in distilled water. F. equiseti shows the maximum germination percentage in -144.54 bars solution in 24 h time with 12.36% germination. These results did not agree with those obtained in the viability test where maximum germination was found in distilled water. The viability analysis showed the great capacity of F. verticilloides strains to form viable colonies, even in such extreme conditions as -144,54 bars after 24 h F. proliferatum colony formation was prevented in the range of -70.37 bars. These results show the clear affectation of water potential to conidia germination of Fusaria. The ability of certain species of Fusarium to develop a saprophytic life in the salt water of the Mediterraneam Sea could be certain. Successful germination, even under high salty media conditions, suggests taht Fusarium spp. could have a competitive advantage over other soil fungi in crops irrigated with saline water. In the specific case of F. solani, water potential of -13.79 bars affected germination positively. It could indicate that F. solani has an special physiological mechanism of survival in low water potential environments.
Resumo:
The area cultivated using conservation tillage has recently increased in central Spain. However, soil compaction and water retention with conservation tillage still remains a genuine concern for landowners in this region be- cause of its potential effect on the crop growth and yield. The aim of this research is to determine the short- term influences of four tillage treatments on soil physical properties. In the experiment, bulk density, cone index, soil water potential, soil temperature and maize (Zea mays L.) productivity have been measured. A field experiment was established in spring of 2013 on a loamy soil. The experiment compared four tillage methods (zero tillage, ZT; reservoir tillage, RT; minimum tillage, MT; and conventional tillage, CT). Soil bulk density and soil cone index were measured during maize growing season and at harvesting time. Furthermore, the soil water potential was monitored by using a wireless sensors network with sensors at 20 and 40 cm depths. Also, soil temperatures were registered at depths of 5 and 12 cm. Results indicated that there were significant differ- ences between soil bulk density and cone index of ZT method and those of RT, MT, and CT, during the growing season; although, this difference was not significant at the time of harvesting in some soil layers. Overall, in most soil layers, tillage practice affected bulk density and cone index in the order: ZT N RT N MT N CT. Regardless oftheentireobservationperiod,results exhibited that soils under ZT and RT treatments usually resulted in higher water potential and lower soil temperature than the other two treatments at both soil depths. In addition, clear differences in maize grain yield were observed between ZT and CT treatments, with a grain yield (up to 15.4%) increase with the CT treatment. On the other hand, no significant differences among (RT, MT, and CT) on maizeyieldwerefound.Inconclusion,the impact of soil compaction increase and soil temperature decrease,pro- duced by ZT treatment is a potential reason for maize yield reduction in this tillage method. We found that RT could be certainly a viable option for farmers incentral Spain,particularly when switching to conservation tillage from conventional tillage. This technique showed a moderate and positive effect on soil physical properties and increased maize yields compared to ZT and MT, and provides an opportunity to stabilize maize yields compared to CT.
Resumo:
"April 1981."
Resumo:
At head of title: State of Louisiana, Dept. of Public Works in cooperation with The United States Geological Survey.
Resumo:
Acknowledgements This study is part of the first author’s PhD projects in 2010–2014, co-funded by the National Centre for Groundwater Research and Training in Australia and the China Scholarship Council. We give thanks to Zijuan Deng and Xiang Xu for their assistance in the field. Constructive comments and suggestion from the anonymous reviewers are appreciated for significant improvement of the manuscript.
Resumo:
The response of "Kerman" pistachio trees budded on three different rootstocks (Pistacia terebinthus, Pista-cia atlantica and Pistacia integerrima) to regulated deficit irrigation (RDI) in shallow soils was studied for3 years. The trees were either fully irrigated (C treatment) or subjected to deficit irrigation during Stage IIof fruit growth with two water stress thresholds (T1 and T2). The irrigation scheduling for fully-irrigatedtrees and water-stressed trees was managed by means of midday stem water potential (?stem) measure-ments. The use of direct measurements of the water status allowed estimating accurately the irrigationrequirements for pistachio trees, with water reductions ranging from 46 to 205 mm in fully-irrigatedtrees. The combination of the ?stemuse and the RDI regime saved 43?70% in T1 and 48?73% in T2 ofwater compared to the calculated crop evapotranspiration (ETc) for fully irrigated treatment (C).Deficit irrigation during Stage II significantly reduced the vegetative growth of the trees. Yield and fruitquality were not affected by any irrigation regime, except during the first year of the study. Thus, theresults indicate that full irrigation scheduling and RDI can be achieved successfully using ?stemtool onpistachio trees growing in shallow soils. A ?stemthreshold of ?1.5 MPa during stage II (T1) was suggestedfor RDI scheduling, as it did not reduce the yield or the production value. However a ?stemthresholdof ?2.0 MPa (T2) resulted in a significant reduction and an extensive delay in the recovery of stomatalconductance (gl),with negative effects on long-term pistachio production.P. integerrima showed a weaker capacity of adaptation to the study conditions compared to P. atlanticaand P. terebinthus, having a tendency to get more stressed and to produce a lower quality crop.
Resumo:
Résumé : Les ions hydronium (H3O + ) sont formés, à temps courts, dans les grappes ou le long des trajectoires de la radiolyse de l'eau par des rayonnements ionisants à faible transfert d’énergie linéaire (TEL) ou à TEL élevé. Cette formation in situ de H3O + rend la région des grappes/trajectoires du rayonnement temporairement plus acide que le milieu environnant. Bien que des preuves expérimentales de l’acidité d’une grappe aient déjà été signalées, il n'y a que des informations fragmentaires quant à son ampleur et sa dépendance en temps. Dans ce travail, nous déterminons les concentrations en H3O + et les valeurs de pH correspondantes en fonction du temps à partir des rendements de H3O + calculés à l’aide de simulations Monte Carlo de la chimie intervenant dans les trajectoires. Quatre ions incidents de différents TEL ont été sélectionnés et deux modèles de grappe/trajectoire ont été utilisés : 1) un modèle de grappe isolée "sphérique" (faible TEL) et 2) un modèle de trajectoire "cylindrique" (TEL élevé). Dans tous les cas étudiés, un effet de pH acide brusque transitoire, que nous appelons un effet de "pic acide", est observé immédiatement après l’irradiation. Cet effet ne semble pas avoir été exploré dans l'eau ou un milieu cellulaire soumis à un rayonnement ionisant, en particulier à haut TEL. À cet égard, ce travail soulève des questions sur les implications possibles de cet effet en radiobiologie, dont certaines sont évoquées brièvement. Nos calculs ont ensuite été étendus à l’étude de l'influence de la température, de 25 à 350 °C, sur la formation in situ d’ions H3O + et l’effet de pic acide qui intervient à temps courts lors de la radiolyse de l’eau à faible TEL. Les résultats montrent une augmentation marquée de la réponse de pic acide à hautes températures. Comme de nombreux processus intervenant dans le cœur d’un réacteur nucléaire refroidi à l'eau dépendent de façon critique du pH, la question ici est de savoir si ces fortes variations d’acidité, même si elles sont hautement localisées et transitoires, contribuent à la corrosion et l’endommagement des matériaux.
Resumo:
We used 2012 sap flow measurements to assess the seasonal dynamics of daily plant transpiration (ETc) in a high-density olive orchard (Olea europaea L. cv. ‘Arbequina’) with a well-watered (HI) control treatment A to supply 100 % of the crop water needs, and a moderately (MI) watered treatment B that replaced 70% of crop needs. To assure that treatment A was well-watered, we compared field daily ETc values against ETc obtained with the Penman-Monteith (PM) combination equation incorporating the Orgaz et al. (2007) bulk daily canopy conductance (gc) model, validated for our non-limiting conditions. We then tested the hypothesis of indirectly monitoring olive ETc from readily available vegetation index (VI) and ground-based plant water stress indicator. In the process we used the FAO56 dual crop coefficient (Kc) approach. For the HI olive trees we defined Kcb as the basal transpiration coefficient, and we related Kcb to remotely sensed Soil Adjusted Vegetation Index (SAVI) through a Kcb-SAVI functional relationship. For the MI treatment, we defined the actual transpiration ETc as the product of Kcb and the stress reduction coefficient Ks obtained as the ratio of actual to crop ETc, and we correlated Ks with MI midday stem water potential (ψst) values through a Ks-ψ functional relationship. Operational monitoring of ETc was then implemented with the ETc = Kcb(SAVI)Ks(ψ)ETo relationship stemmed from the FAO56 approach and validated taking as inputs collected SAVI and ψst data reporting to year 2011. Low validation error (6%) and high goodness-of-fit of prediction were observed (R2 = 0.94, RSME = 0.2 mm day-1, P = 0.0015), allowing to consider that under field conditions it is possible to predict ETc values for our hedgerow olive orchards if SAVI and water potential (ψst) values are known.
Resumo:
Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.
Resumo:
Abstract Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.
Resumo:
This study aimed to test controlled levels of water deficiency in soil in mango trees, under microsprinkling irrigation, in semi-arid conditions, and to evaluate its effect in the productivity and fruits quality. The deficits were applied in the phases I, II and III of growth of the fruit, during the productive cycles of the mango tree in 2006 and 2007. The experiment in both cases was arranged in an entirely random design with 10 treatments and 3 repetitions, in the year I, and with 8 treatments and 3 repetitions in the year II. The values of soil water potential, of the treatments submitted to regulated deficit irrigation (RDI), were placed in the range of 0 to -0.011 MPa, showing that the soil humidity varied between the saturation and the field capacity, not characterizing deficit water condition. The average values of stem water potential (Ψstem) varied between -0.90 and -1.74 MPa, evidencing significant effect (p <0.05) just for T1 (without irrigation), T7 and T8 (RDI with 30% of the ETc in the phases II and III, respectively). Through the variance analysis, significant differences were not verified among productivity, number of fruits per plant and size of the fruit, in none of the experiments, what indicates the possibility of reduction of the water use in the irrigation of the mango tree without significant losses of productivity and fruit quality.