944 resultados para statistical
Resumo:
The objective of this study was to show the association patterns among seven types of dental anomalies (second pre-molar agenesis, upper side incisive reduced in size, lower first molar infra-ochlesis, enamel hypoplasia, first molar ectopic eruption, supra numerous teeth and upper canine ectopic eruption) in a population sample without dental treatment ranging in age from 7 to 14. A total of 172 patients were attended and underwent the clinical examination at the Clinica Infantil da Fundacao Educacional de Barretos. Eleven patients from this total were selected according to a first dental anomaly diagnosis and submitted to panoramic radiography. A significant association (p < 0.05) was detected among six pairs of anomalies (second pre-molar agenesis x first pre-molar ectopic eruption; second pre-molar agenesis x lower first molar infra-ochlesis; second pre-molar agenesis x upper side incisive reduced in size; supra numerous teeth x reduced size upper side incisive; first pre-molar ectopic eruption x enamel hypoplasia; lower first molar infra-ochlesis x upper side incisive reduced in size) suggesting a common genetic origin for these conditions. The association was not significant in only one case where there was anomaly sharing by the patients. The existence of an anomaly is clinically relevant for early diagnosis of a possible association and an anomaly can indicate an increased risk of other anomalies.
Resumo:
No Abstract
Resumo:
Objective: The aim of this article is to propose an integrated framework for extracting and describing patterns of disorders from medical images using a combination of linear discriminant analysis and active contour models. Methods: A multivariate statistical methodology was first used to identify the most discriminating hyperplane separating two groups of images (from healthy controls and patients with schizophrenia) contained in the input data. After this, the present work makes explicit the differences found by the multivariate statistical method by subtracting the discriminant models of controls and patients, weighted by the pooled variance between the two groups. A variational level-set technique was used to segment clusters of these differences. We obtain a label of each anatomical change using the Talairach atlas. Results: In this work all the data was analysed simultaneously rather than assuming a priori regions of interest. As a consequence of this, by using active contour models, we were able to obtain regions of interest that were emergent from the data. The results were evaluated using, as gold standard, well-known facts about the neuroanatomical changes related to schizophrenia. Most of the items in the gold standard was covered in our result set. Conclusions: We argue that such investigation provides a suitable framework for characterising the high complexity of magnetic resonance images in schizophrenia as the results obtained indicate a high sensitivity rate with respect to the gold standard. (C) 2010 Elsevier B.V. All rights reserved.
Statistical interaction with quantitative geneticists to enhance impact from plant breeding programs
Resumo:
Now that some of the genes involved in asthma and allergy have been identified, interest is turning to how genetic predisposition interacts with exposure to environmental risk factors. These questions are best answered by studies in which both genotypes and other risk factors are measured, but even simpler studies, in which family history is used as a proxy for genotype, have made suggestive findings. For example, early breast feeding may increase the risk of allergic disease in genetically susceptible children, and decrease the risk of 'sporadic' allergy. This review also addresses the overall importance of genetic causes of allergic disease in the general population.
Resumo:
This article reports on the results of a study undertaken by the author together with her research assistant, Heather Green. The study collected and analysed data from all disciplinary tribunal decisions heard in Queensland since 1930 in an attempt to provide empirical information which has previously been lacking. This article will outline the main features of the disciplinary system in Queensland, describe the research methodology used in the present study and then report on some findings from the study. Reported findings include a profile of solicitors who have appeared before a disciplinary hearing, the types of matters which have attracted formal discipline and the types of orders made by the tribunal. Much of the data is then presented on a time scale so as to reveal any changes over time.
Resumo:
The monitoring of infection control indicators including hospital-acquired infections is an established part of quality maintenance programmes in many health-care facilities. However, surveillance data use can be frustrated by the infrequent nature of many infections. Traditional methods of analysis often provide delayed identification of increasing infection occurrence, placing patients at preventable risk. The application of Shewhart, Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average (EWMA) statistical process control charts to the monitoring of indicator infections allows continuous real-time assessment. The Shewhart chart will detect large changes, while CUSUM and EWMA methods are more suited to recognition of small to moderate sustained change. When used together, Shewhart and EWMA methods are ideal for monitoring bacteraemia and multiresistant organism rates. Shewhart and CUSUM charts are suitable for surgical infection surveillance.
Resumo:
This paper proposes a template for modelling complex datasets that integrates traditional statistical modelling approaches with more recent advances in statistics and modelling through an exploratory framework. Our approach builds on the well-known and long standing traditional idea of 'good practice in statistics' by establishing a comprehensive framework for modelling that focuses on exploration, prediction, interpretation and reliability assessment, a relatively new idea that allows individual assessment of predictions. The integrated framework we present comprises two stages. The first involves the use of exploratory methods to help visually understand the data and identify a parsimonious set of explanatory variables. The second encompasses a two step modelling process, where the use of non-parametric methods such as decision trees and generalized additive models are promoted to identify important variables and their modelling relationship with the response before a final predictive model is considered. We focus on fitting the predictive model using parametric, non-parametric and Bayesian approaches. This paper is motivated by a medical problem where interest focuses on developing a risk stratification system for morbidity of 1,710 cardiac patients given a suite of demographic, clinical and preoperative variables. Although the methods we use are applied specifically to this case study, these methods can be applied across any field, irrespective of the type of response.
Resumo:
The effect of number of samples and selection of data for analysis on the calculation of surface motor unit potential (SMUP) size in the statistical method of motor unit number estimates (MUNE) was determined in 10 normal subjects and 10 with amyotrophic lateral sclerosis (ALS). We recorded 500 sequential compound muscle action potentials (CMAPs) at three different stable stimulus intensities (10–50% of maximal CMAP). Estimated mean SMUP sizes were calculated using Poisson statistical assumptions from the variance of 500 sequential CMAP obtained at each stimulus intensity. The results with the 500 data points were compared with smaller subsets from the same data set. The results using a range of 50–80% of the 500 data points were compared with the full 500. The effect of restricting analysis to data between 5–20% of the CMAP and to standard deviation limits was also assessed. No differences in mean SMUP size were found with stimulus intensity or use of different ranges of data. Consistency was improved with a greater sample number. Data within 5% of CMAP size gave both increased consistency and reduced mean SMUP size in many subjects, but excluded valid responses present at that stimulus intensity. These changes were more prominent in ALS patients in whom the presence of isolated SMUP responses was a striking difference from normal subjects. Noise, spurious data, and large SMUP limited the Poisson assumptions. When these factors are considered, consistent statistical MUNE can be calculated from a continuous sequence of data points. A 2 to 2.5 SD or 10% window are reasonable methods of limiting data for analysis. Muscle Nerve 27: 320–331, 2003
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.