956 resultados para spectral properties
Resumo:
Spectral properties of a double quantum dot (QD) structure are studied by a causal Green's function (GF) approach. The double QD system is modeled by an Anderson-type Hamiltonian in which both the intra- and interdot Coulomb interactions are taken into account. The GF's are derived by an equation-of-motion method and the real-space renormalization-group technique. The numerical results show that the average occupation number of electrons in the QD exhibits staircase features and the local density of states depends appreciably on the electron occupation of the dot.
Resumo:
(Y0.95Ln(0.01)Ce(0.04))(3)Al5O12 phosphors were synthesized by high-temperature solid state reaction under reducing atmosphere and the doping effects of lanthanide ions (Ln(3+)) on the luminescence properties of phosphors were studied. YAG: Ce, Ln spectra of excitation and emission show that the influence between Ce3+ and Ln(3+) can be divided into the following three types
Resumo:
The electronic structures and spectral properties of three Re(I) complexes [Re(CO)(3)XL] (X = Br, Cl; L = 1-(4-5 '-phenyl-1.3,4-oxadiazolylbenzyl)-2-pyridinylbenzoimidazole (1), 1-(4-carbazolylbutyl)-2-pyridinylbenzoimidazole (2), and 2-(1-ethyl benzimidazol-2-yl)pyridi ne (3)) were investigated theoretically. The ground and the lowest lying triplet excited states were full optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. TDDFT/PCM calculations have been employed to predict the absorption and emission spectra starting from the ground and excited state geometries, respectively.
Resumo:
In order to explore new highly organic electroluminescent materials, six symmetrical aromatic oxide-oxadiazoles containing pyridine ring 4a similar to 4f were synthesized through cyclization of substituted benzoic acid (2) with 2,6-dihydrazide pyridine (3) by "one-pot" method in POCl3. Their structures were confirmed by MS, IR, H-1 NMR techniques and elemental analysis. The fluorescence spectra of the target compounds showed that the A,m ranged from 347 to 507 nm, and the maximum A,m were close to 384 nm, which showed that these compounds have good fluorescence with strong fluorescence intensity. When the 5-Br group was introduced into the aromatic ring (4e and 4f), the fluorescent emission wavelength took place Einstein shift, and the fluorescent intensity decreased a little. Using quinine bisulphate as a reference, the fluorescence quantum yields were all tested, and the introduction of 5-Br group had no visible effect on fluorescence quantum yield.