992 resultados para species associations
Resumo:
Theoretical and empirical studies demonstrate that the total amount of forest and the size and connectivity of fragments have nonlinear effects on species survival. We tested how habitat amount and configuration affect understory bird species richness and abundance. We used mist nets (almost 34,000 net hours) to sample birds in 53 Atlantic Forest fragments in southeastern Brazil. Fragments were distributed among 3 10,800-ha landscapes. The remaining forest in these landscapes was below (10% forest cover), similar to (30%), and above (50%) the theoretical fragmentation threshold (approximately 30%) below which the effects of fragmentation should be intensified. Species-richness estimates were significantly higher (F = 3715, p = 0.00) where 50% of the forest remained, which suggests a species occurrence threshold of 30-50% forest, which is higher than usually occurs (<30%). Relations between forest cover and species richness differed depending on species sensitivity to forest conversion and fragmentation. For less sensitive species, species richness decreased as forest cover increased, whereas for highly sensitive species the opposite occurred. For sensitive species, species richness and the amount of forest cover were positively related, particularly when forest cover was 30-50%. Fragment size and connectivity were related to species richness and abundance in all landscapes, not just below the 30% threshold. Where 10% of the forest remained, fragment size was more related to species richness and abundance than connectivity. However, the relation between connectivity and species richness and abundance was stronger where 30% of the landscape was forested. Where 50% of the landscape was forested, fragment size and connectivity were both related to species richness and abundance. Our results demonstrated a rapid loss of species at relatively high levels of forest cover (30-50%). Highly sensitive species were 3-4 times more common above the 30-50% threshold than below it; however, our results do not support a unique fragmentation threshold.
Resumo:
Plant species richness of permanent grasslands has often been found to be significantly associated with productivity. Concentrations of nutrients in biomass can give further insight into these productivity- plant species richness relationships, e.g. by reflecting land use or soil characteristics. However, the consistency of such relationships across different regions has rarely been taken into account, which might significantly compromise our potential for generalization. We recorded plant species richness and measured above-ground biomass and concentrations of nutrients in biomass in 295 grasslands in three regions in Germany that differ in soil and climatic conditions. Structural equation modelling revealed that nutrient concentrations were mostly indirectly associated with plant species richness via biomass production. However, negative associations between the concentrations of different nutrients and biomass and plant species richness differed considerably among regions. While in two regions, more than 40% of the variation in plant species richness could be attributed to variation in biomass, K, P, and to some degree also N concentrations, in the third region only 15% of the variation could be explained in this way. Generally, highest plant species richness was recorded in grasslands where N and P were co-limiting plant growth, in contrast to N or K (co-) limitation. But again, this pattern was not recorded in the third region. While for two regions land-use intensity and especially the application of fertilizers are suggested to be the main drivers causing the observed negative associations with productivity, in the third region the little variance accounted for, low species richness and weak relationships implied that former intensive grassland management, ongoing mineralization of peat and fluctuating water levels in fen grasslands have overruled effects of current land-use intensity and productivity. Finally, we conclude that regional replication is of major importance for studies seeking general insights into productivity-diversity relationships.
Resumo:
"R6-MBS-TP-041-1992."
Resumo:
This study evaluated the in vitro susceptibility of C. albicans, C. dubliniensis, C. tropicalis and C. krusei to photodynamic therapy (PDT) induced by Photogem® and light emitting diode (LED). Suspensions of each Candida strain were treated with three photosensitizer (PS) concentrations (10, 25 and 50 mg/L) and exposed to 18.0, 25.5 and 37.5 J/cm² LED light fluences (λ ~ 455 nm). Control suspensions were treated only with PS concentrations, only exposed to the LED light fluences or not exposed to LED light or PS. Sixteen experimental conditions were obtained and each condition was repeated three times. From each sample, serial dilutions were obtained and aliquots were plated on Sabouraud Dextrose Agar. After incubation of plates (37 ºC for 48 hours), colonies were counted (cfu/mL) and the data were statistically analyzed by ANOVA and the Tukey test (α=0.05). Complete killing of C. albicans was observed after 18.0 J/cm² in association with 50 mg/L of PS. C. dubliniensis were inactivated after 18.0 J/cm² using 25 mg/L of PS. The inactivation of C. tropicalis was observed after photosensitization with 25 mg/L and subsequent illumination at 25.5 J/cm². For C. krusei, none of the associations between PS and light resulted in complete killing of this species. PDT proved to be effective for the inactivation of C. albicans, C. dubliniensis and C. tropicalis. In addition, reduction in the viability of C. krusei was achieved with some of the PS and light associations.
Resumo:
The results presented in this paper refer to a host survey, lasting approximately three and a half years (February 2003-july 2006), undertaken in the Vale do Rio Doce Natural Reserve, a remnant area of the highly endangered Atlantic Rain Forest located in Linhares County, State of Espirito Santo, Brazil. A total of 330 fruit samples were collected from native plants, representing 248 species and 51 plant families. Myrtaceae was the most diverse family with 54 sampled species. Twenty-eight plant species, from ten families, are hosts of ten Anastrepha species and of Ceratitis capitata (Wiedemann). Among 33 associations between host plants and fruit flies, 20 constitute new records, including the records of host plants for A. fumipennis Lima and A. nascimentoi Zucchi. The findings were discussed in the light of their implications for rain forest conservation efforts and the study of evolutionary relationships between fruit flies and their hosts.
Resumo:
The nature of an experiment involving 204 residents is outlined and the results are reported and analysed. Two consecutive surveys of the respondents provide data about their stated knowledge of 23 wildlife species present in tropical Australia, most of which exclusively occur there. In addition, these surveys provide data about the willingness of respondents to pay for the conservation of those species belonging to three taxa; reptiles, mammals, and birds. Thus it is possible to compare the respondents’ stated knowledge of the species with their willingness to pay for their conservation, and to draw relevant inferences from this. From the initial survey and these associations, interesting relationships can be observed between those variables (knowledge and willingness to pay). The second survey was completed after the respondents’ knowledge of the species was experimentally increased and became more balanced. This is shown to result in increased dispersion (greater discrimination) in willingness to contribute to conservation of the different species in the set of wildlife species considered. Both theoretical and policy conclusions are drawn from the results.
Resumo:
1. Latitudinal variation among species in life-history traits is often suggested to contribute to high tropical species richness. However, traditional methods of analysing such variation rarely control for phylogeny and latitudinal range overlap between species, potentially giving misleading results. 2. Using a method of pairwise independent contrasts which overcomes these problems, I tested for latitudinal variation among bird species in a number of traits which have been linked, theoretically or empirically, with both latitude and species richness. 3. This method indicates strong support for Rapoport's Rule and decreasing clutch size towards the equator in both hemispheres, but only partial support for decreasing body size and ecological generalism towards the equator. 4. Indirect measures of sexual selection (sexual dichromatism and size dimorphism) show no variation with latitude; an apparent increase in dichromatism towards the equator is shown to be an artefact of phylogeny. 5. Many of the associations between life history and latitude were not detected by traditional cross-species analyses, highlighting the importance of incorporating phylogeny and overlap in studies of geographical life-history variation. Establishing associations between life-history traits and latitude does not prove, but is a necessary prerequisite for., a link between these traits and latitudinal diversity gradients.
Resumo:
It is becoming increasingly apparent that at least some aspects of the evolution of mate recognition may be amenable to manipulation in evolutionary experiments. Quantitative genetic analyses that focus on the genetic consequences of evolutionary processes that result in mate recognition evolution may eventually provide an understanding of the genetic basis of the process of speciation. We review a series of experiments that have attempted to determine the genetic basis of the response to natural and sexual selection on mate recognition in the Drosophila serrata species complex. The genetic basis of mate recognition has been investigated at three levels: (1) between the species of D. serrata and D. birchii using interspecific hybrids, (2) between populations of D. serrata that are sympatric and allopatric with respect to D. birchii, and (3) within populations of D. serrata. These experiments suggest that it may be possible to use evolutionary experiments to observe important events such as the reinforcement of mate recognition, or the generation of the genetic associations that are central to many sexual selection models.
Resumo:
The traditional explanation for interspecific plumage colour variation in birds is that colour differences between species are adaptations to minimize the risk of hybridization. Under this explanation, colour differences between closely related species of birds represent reproductive character displacement. An alternative explanation is that interspecific variation in plumage colour is an adaptive response to variation in light environments across habitats. Under this explanation, differences in colour between closely related species are a product of selection on signal efficiency. We use a comparative approach to examine these two hypotheses, testing the effects of sympatry and habitat use, respectively, on divergence in male plumage colour. Contrary to the prediction of the Species Isolation Hypothesis, we find no evidence that sympatric pairs of species are consistently more divergent in coloration than are allopatric pairs of species. However, in agreement with the Light Environment Hypothesis, we find significant associations between plumage coloration and habitat use. All of these results remain qualitatively unchanged irrespective of the statistical methodology used to compare reflectance spectra, the body regions used in the analyses, or the exclusion of areas of plumage not used in sexual displays. Our results suggest that, in general, interspecific variation in plumage colour among birds is more strongly influenced by the signalling environment than by the risk of hybridization.
Resumo:
A large number of herbaceous and woody plants from tropical woodland, savanna, and monsoon forest were analysed to determine the impact of environmental factors (nutrient and water availability, fire) and biological factors (microbial associations, systematics) on plant delta(15)N values. Foliar delta(15)N values of herbaceous and woody species were not related to growth form or phenology, but a strong relationship existed between mycorrhizal status and plant delta(15)N. In woodland and savanna, woody species with ectomycorrhizal (ECM) associations and putative N-2-fixing species with ECM/arbuscular (AM) associations had lowest foliar delta(15)N values (1.0-0.6parts per thousand), AM species had mostly intermediate delta(15)N values (average +0.6parts per thousand), while non-mycorrhizal Proteaceae had highest delta(15)N values (+2.9 to +4.1parts per thousand). Similar differences in foliar delta(15)N were observed between AM (average 0.1 and 0.2parts per thousand) and non-mycorrhizal (average +0.8 and +0.3parts per thousand) herbaceous species in woodland and savanna. Leguminous savanna species had significantly higher leaf N contents (1.8-2.5% N) than non-fixing species (0.9-1.2% N) indicating substantial N acquisition via N-2 fixation. Monsoon forest species had similar leaf N contents (average 2.4% N) and positive delta(15)N values (+0.9 to +2.4parts per thousand). Soil nitrification and plant NO3- use was substantially higher in monsoon forest than in woodland or savanna. In the studied communities, higher soil N content and nitrification rates were associated with more positive soil delta(15)N and plant delta(15)N. In support of this notion, Ficus, a high NO3- using taxa associated with NO3- rich sites in the savanna, had the highest delta(15)N values of all AM species in the savanna. delta(15)N of xylem sap was examined as a tool for studying plant delta(15)N relations. delta(15)N of xylem sap varied seasonally and between differently aged Acacia and other savanna species. Plants from annually burnt savanna had significantly higher delta(15)N values compared to plants from less frequently burnt savanna, suggesting that foliar N-15 natural abundance could be used as marker for assessing historic fire regimes. Australian woodland and savanna species had low leaf delta(15)N and N content compared to species from equivalent African communities indicating that Australian biota are the more N depauperate. The largest differences in leaf delta(15)N occurred between the dominant ECM Australian and African savanna (miombo) species, which were depleted and enriched in N-15, respectively. While the depleted delta(15)N of Australian ECM species are similar to those of previous reports on ECM species in natural plant communities, the N-15-enriched delta(15)N of African ECM species represent an anomaly.
Resumo:
The planktonic chaetognaths from the Brazil-Malvinas (Falkland) confluence, extending between 36º 30' - 50º 5' S and 60º 33' - 41º 7' W, were studied. Ten species were found: Eukrohnia hamata (Möbius, 1875) (Eukrohniidae), Pterosagitta draco (Krohn, 1853) (Pterosagittidae), Sagitta enflata Grassi, 1881, Sagitta gazellae Ritter-Zahony, 1909, Sagitta hexaptera d´Orbigny, 1834, Sagitta lyra Krohn, 1853, Sagitta minima Grassi, 1881, Sagitta planctonis Steinhaus, 1896, Sagitta serratodentata Krohn, 1853, and Sagitta tasmanica Thomson, 1947 (Sagittidae). Sagitta gazellae was the most abundant species followed by E. hamata, S. tasmanica and S. serratodentata. The association analysis among the different species, salinity and temperature revealed two groups of species, one related to higher salinities and warmer waters (P. draco, S. hexaptera and S. serratodentata) and the other to lower salinities and colder waters (E. hamata, S. gazellae and S. tasmanica). The fact that P. draco and S. hexaptera, formerly defined as warm-water species, appeared further south than previously reported might be related to the existence of warm core eddies up to 46º S in September and October 1988.
Resumo:
Nearly all remnants of temperate grasslands in southeastern South America are used for livestock ranching and are subject to habitat degradation resulting from this activity. Exploring how habitat features affect the composition of grassland avifaunal communities is a first step to understand how current cattle-ranching management practices impact avian diversity. We used canonical ordination to test for relationships between five habitat variables and the composition of the bird community in coastal grasslands in southern Brazil. We sampled pastures with different heights, from overgrazed short-grass to tall herbaceous vegetation. We recorded 1,535 individuals and 27 species of birds. The first ordination axis indicated a strong contribution of mean vegetation height on the composition of the bird community, whereas the second axis revealed the influence of herbaceous vegetation patchiness and woody vegetation cover. Three groups of species were revealed by the ordination: one more diffuse associated with intermediate and tall herbaceous vegetation, another with short grass, and a third with vegetation patchiness and woody vegetation. Species restricted to tall herbaceous vegetation are negatively impacted from habitat degradation resulting from overgrazing and trampling by livestock, and mowing and burning of tall plants. Occurrence of these species in our study area is related with the presence of swales immediately behind the dune system and where remnants of tall vegetation persist. Birds of pastures with ample cover of short herbaceous plants, including one globally threatened species and six other restricted to short-grass habitat, apparently benefit from local livestock management practices. Woody vegetation possibly functions as a keystone structure, enabling the occurrence in grasslands of avian species that rely on shrubby habitat. Although livestock ranching promotes the diversity of habitats by creating distinct patches of vegetation height in grasslands, current management practices directed to the maintenance of short grass pastures may eliminate an entire subset of species, including regionally threatened taxa, and reduce avian diversity. The maintenance of large patches of tall herbaceous plants is needed to ensure the survival of species reliant on this type of grassland structure in our study area.
Resumo:
1. The mechanisms underlying host choice strategies by parasites remain poorly understood. We address two main questions: (i) do parasites prefer vulnerable or well-fed hosts, and (ii) to what extent is a parasite species specialized towards a given host species? 2. To answer these questions, we investigated, both in the field and in the lab, a host-parasite system comprising one ectoparasitic mite (Spinturnix myoti) and its major hosts, two sibling species of bats (Myotis myotis and M blythii), which coexist intimately in colonial nursery roosts. We exploited the close physical associations between host species in colonial roosts as well as naturally occurring annual variation in food abundance to investigate the relationships between parasite intensities and (i) host species and (ii) individual nutritional status. 3. Although horizontal transmission of parasites was facilitated by the intimate aggregation of bats within their colonial clusters, we found significant interspecific differences in degree of infestation throughout the 6 years of the study, with M. myotis always more heavily parasitized than M. blythii. This pattern was replicated in a laboratory experiment in which any species-specific resistance induced by exploitation of different trophic niches in nature was removed. 4. Within both host species, S. myoti showed a clear preference for individuals with higher nutritional status. In years with high resource abundance, both bat hosts harboured more parasites than in low-resource years, although the relative difference in parasite burden across species was maintained. This pattern of host choice was also replicated in the laboratory. When offered a choice, parasites always colonized better-fed individuals. 5. These results show first that host specialization in our study system occurred. Second, immediate parasite choice clearly operated towards the selection of hosts in good nutritional state.
Resumo:
A total of 443 bat flies belonging to the families Nycteribiidae and Strelidae, were collected on 22 species of bats (Molossidae, Phyllostomidae, and Vespertilionidae) from Parque Estadual da Cantareira (São Paulo, Brazil), between January, 2000 and January, 2001. Eighteen new occurrences of bat flies were recorded on Anoura geoffroyi (Anastrebla caudiferae), Glossophaga soricina (A. caudiferae), Sturnira lilium (Trichobius phyllostomae, T. furmani, and Paraeuctenodes similis), Artibeus lituratus (A. caudiferae), A. fimbriatus (Megistopoda proxima), A. obscurus (Metelasmus pseudopterus), Myotis nigricans (M. proxima, M. aranea, Paratrichobius longicrus), M. ruber (Anatrichobius passosi, Joblingia sp.), M. levis (A. passosi), M. albescens (A. passosi, Basilia andersoni), and Histiotus velatus (M. aranea). Seven new occurrences were recorded for the state of São Paulo, increasing the range for T. tiptoni, T. furmani, M. proxima, Aspidoptera falcata, A. caudiferae, A. modestini and B. andersoni. The relationships between parasitism and host sex, reproductive stage, age hyperparasitism by fungi are discussed.