28 resultados para soymilk
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of inulin and/or okara flour on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product (FSP) and on probiotic survival under in vitro simulated gastrointestinal conditions were investigated throughout 28 days of storage at 4 °C. Employing a 22 design, four FSP trials were produced from soymilk fermented with ABT-4 culture (La-5, Bb-12, and Streptococcus thermophilus): FSP (control); FSP-I (with inulin, 3 g/100 mL of soymilk); FSP-O (with okara, 5 g/100 mL); FSP-IO (with inulin + okara, ratio 3:5 g/100 mL). Probiotic viabilities ranged from 8 to 9 log cfu/g during the 28 days of storage, and inulin and/or okara flour did not affect the viability of La-5 and Bb-12. Bb-12 resistance to the artificial gastrointestinal juices was higher than for La-5, since the Bb-12 and La-5 populations decreased approximately 0.6 log cfu/g and 3.8 log cfu/g, respectively, throughout storage period. Even though the protective effect of inulin and/or okara flour on probiotic microorganisms was not significant, when compared to a fresh culture, the FSP matrix improved Bb-12 survival on day 1 of storage and may be considered a good vehicle for Bb-12 and could play an important role in probiotic protection against gastrointestinal juices. © 2013 Elsevier Ltd.
Resumo:
The aim of the present study was to investigate the effect of isofl avones supplementation of a fermented soy product on its sensory acceptance, physicochemical properties and probiotic cell viable count. Additionally we also investigated the ability of the mixed starter cultures (Enterococcus faecium CRL 183 and Lactobacillus helveticus 416) to modify the isofl avones profi le of soy product during the fermentation process. Three products were analysed: soy product fermented with E. faecium CRL 183 and L. helveticus 416, isofl avonessupplemented soy product (fermented with E. faecium CRL 183 and L. helveticus 416; 50mg/100g, Isofl avin®, Galena, Brazil) and unfermented soy product. A panel of judges evaluated the acceptability of the samples on a nine point structured hedonic scale. The chemical composition namely fat, protein, ash and total carbohydrate contents, pH, enumeration of viable Lactobacillus spp. and Enterococcus spp. and quantifi cation of isofl avones using HPLC were investigated. All determinations were conducted after 7 days storage at 10°C. The sensorial acceptance was reduced in the isofl avones-supplemented soy product, but this effect was not signifi cant compared to the sample without isofl avones addition. Chemical composition did not differ (p<0.05) among the samples. Cell viable counts were reduced and total fermentation time was longer in the isofl avonessupplemented soy product, suggesting that the isofl avone addition could inhibit the starter cultures. However, all the products may be considered probiotic since they exhibited lactic acid bacterial populations varying from 2.3 x 109 up to 1.22 x 1010 CFU/mL. Fermentation of soymilk did not change the isofl avones profi le. In conclusion, it was possible to obtain a fermented soy product containing a high isofl avones concentration, adequate sensory and chemical characteristics and lactic acid bacterial viability suffi ciently high to characterize the product as a probiotic. The mixed starter culture was not able to convert the glycoside isofl avones into aglycone or produce equol during the fermented soy product processing.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study evaluated by an in vitro model the effect of beverages on dental enamel previously subjected to erosive challenge with hydrochloric acid. The factor under study was the type of beverage, in five levels: Sprite® Zero Low-calorie Soda Lime (positive control), Parmalat® ultra high temperature (UHT) milk, Ades® Original soymilk, Leão® Ice Tea Zero ready-to-drink low-calorie peach-flavored black teaand Prata® natural mineral water (negative control). Seventy-five bovine enamel specimens were distributed among the five types of beverages (n=15), according to a randomized complete block design. For the formation of erosive wear lesions, the specimens were immersed in 10 mL aqueous solution of hydrochloric acid 0.01 M for 2 min. Subsequently, the specimens were immersed in 20 mL of the beverages for 1 min, twice daily for 2 days at room temperature. In between, the specimens were kept in 20 mL of artificial saliva at 37ºC. The response variable was the quantitative enamel microhardness. ANOVA and Tukey's test showed highly significant differences (p<0.00001) in the enamel exposed to hydrochloric acid and beverages. The soft drink caused a significantly higher decrease in microhardness compared with the other beverages. The black tea caused a significantly higher reduction in microhardness than the mineral water, UHT milk and soymilk, but lower than the soft drink. Among the analyzed beverages, the soft drink and the black tea caused the most deleterious effects on dental enamel microhardness.
Resumo:
The Dairy Group includes milk, yogurt, cheese, and fortified soymilk. They provide calcium, vitamin D, potassium, protein, and other nutrients needed for good health throughout life. Choices should be lowfat or fat-free—to cut calories and saturated fat. How much is needed? Older children, teens, and adults need 3 cups* a day, while children 4 to 8 years old need 2½ cups, and children 2 to 3 years old need 2 cups.