998 resultados para soil inoculation
Resumo:
Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by further spread through the inner tissues, resulting in endophytic colonization. The major factors contributing to these interactions are not always well understood for most bacterial and plant species. It is believed that specific bacterial functions are required for plant colonization, but also from the plant side specific features are needed, such as plant genotype (cultivar) and developmental stage. Via multivariate analysis we present a quantification of the roles of these components on the composition of root-associated and endophytic bacterial communities in potato plants, by weighing the effects of bacterial inoculation, plant genotype and developmental stage. Spontaneous rifampicin resistant mutants of two bacterial endophytes, Paenibacillus sp. strain E119 and Methylobacterium mesophilicum strain SR1.6/6, were introduced into potato plants of three different cultivars (Eersteling, Robijn and Karnico). Densities of both strains in, or attached to potato plants were measured by selective plating, while the effects of bacterial inoculation, plant genotype and developmental stage on the composition of bacterial, Alphaproteobacterial and Paenibacillus species were determined by PCR-denaturing gradient gel-electrophoresis (DGGE). Multivariate analyses revealed that the composition of bacterial communities was mainly driven by cultivar type and plant developmental stage, while Alphaproteobacterial and Paenibacillus communities were mainly influenced by bacterial inoculation. These results are important for better understanding the effects of bacterial inoculations to plants and their possible effects on the indigenous bacterial communities in relation with other plant factors such as genotype and growth stage.
Resumo:
Although plant growth is often limited at high pH, little is known about root-induced changes in the rhizospheres of plants growing in alkaline soils. The effect of Mn deficiency in Rhodes grass (Chloris gayana cv. Pioneer) and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. Rhizosphere pH was measured quantitatively, with a micro pH electrode, and qualitatively, with an agar/pH indicator solution. Manganese deficiency in Rhodes grass increased root-induced acidification of the rhizosphere in a soil profile in which N was supplied entirely as NO3-. Rhizosphere pH in the Mn deficient plants was up to 1.22 pH units lower than that of the bulk soil, while only 0.90 to 0.62 pH units lower in plants supplied with adequate Mn. When soil N was supplied entirely as NO3-, rhizosphere acidification was more efficient in inoculated lucerne (1.75 pH unit decrease) than in non-inoculated lucerne (1.16 pH unit decrease). This difference in capacity to lower rhizosphere pH is attributable to the ability of the inoculated lucerne to fix atmospheric N2 rather than relying on the soil N (NO3 ) reserves as the non-inoculated plants. Rhizosphere acidification in both Rhodes grass and lucerne was greatest in the meristematic root zone and least in the maturation root zone.
Resumo:
This study details the novel application of predacious copepods, genus Mesocyclops, for control of Ochlerotatus tremulus (Theobald) group and Aedes aegypti (L.) mosquito larvae in subterranean habitats in north Queensland, Australia. During June 1997, 50 Mesocyclops sp. I were inoculated into one service manhole in South Townsville. Wet season rainfall and flooding in both 1998 and 2000 was responsible for the dispersal of copepods via the underground pipe system to 29 of 35 manholes over an area of 1.33 km(2). Significant reductions in Aedes and Ochlerotatus larvae ensued. In these habitats, Mesocyclops and Metacyclops were able to survive dry periods, when substrate moisture content ranged from 13.8 to 79.9%. At the semiarid inland towns of Hughenden and Richmond, cracking clay soil prevents drainage of water from shallow service pits where Oc. tremulus immatures numbered from 292-18,460 per pit. Introduction of Mesocyclops copepods into these sites during May 1999 resulted in 100% control of Oc. tremulus for 18 mo. One uninoculated pit subsequently became positive for Mesocyclops with resultant control of mosquito larvae.
Resumo:
A case of acute pulmonary histoplasmosis, where the clinical histoiy and epidemiological data led to the identification of H. capsulatum natural source, is described. Specimens of spleen and liver, obtained after intraperitonial inoculation in mice, grew H. capsulatum in culture from the soil of rural area of General Câmara, by the first time in Rio Grande do Sul.
Resumo:
A plant growth-promoting bacterial (PGPB) strain SC2b was isolated from the rhizosphere of Sedum plumbizincicola grown in lead (Pb)/zinc (Zn) mine soils and characterized as Bacillus sp. based on (1) morphological and biochemical characteristics and (2) partial 16S ribosomal DNA sequencing analysis. Strain SC2b exhibited high levels of resistance to cadmium (Cd) (300 mg/L), Zn (730 mg/L), and Pb (1400 mg/L). This strain also showed various plant growth-promoting (PGP) features such as utilization of 1-aminocyclopropane-1-carboxylate, solubilization of phosphate, and production of indole-3-acetic acid and siderophore. The strain mobilized high concentration of heavy metals from soils and exhibited different biosorption capacity toward the tested metal ions. Strain SC2b was further assessed for PGP activity by phytagar assay with a model plant Brassica napus. Inoculation of SC2b increased the biomass and vigor index of B. napus. Considering such potential, a pot experiment was conducted to assess the effects of inoculating the metal-resistant PGPB SC2b on growth and uptake of Cd, Zn and Pb by S. plumbizincicola in metal-contaminated agricultural soils. Inoculation with SC2b elevated the shoot and root biomass and leaf chlorophyll content of S. plumbizincicola. Similarly, plants inoculated with SC2b demonstrated markedly higher Cd and Zn accumulation in the root and shoot system, indicating that SC2b enhanced Cd and Zn uptake by S. plumbizincicola through metal mobilization or plant-microbial mediated changes in chemical or biological soil properties. Data demonstrated that the PGPB Bacillus sp. SC2b might serve as a future biofertilizer and an effective metal mobilizing bioinoculant for rhizoremediation of metal polluted soils.
Resumo:
Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas Bacillus sp. E1S2 significantly enhanced the accumulation of Zn (18%) in plants compared with non-inoculated controls. The inoculated strains also showed high levels of colonization in rhizosphere and plant tissues. Results demonstrate the potential to improve phytoextraction of soils contaminated with multiple heavy metals by inoculating metal hyperaccumulating plants with their own selected functional endophytic bacterial strains.
Resumo:
The objectives of Participant 4 were: - Establishment and maintenance of a representative collection of AM fungal species in vivo on trap plant cultures. - Study of the effects of early mycorrhizal inoculation in the growth and health of in vitro plantlets and their subsequent behaviour in the nursery. - Effect of the mycorrhization of in vitro produced bananas and plantains on plant growth and health, under biotic stress conditions (nematode and fungi)
Resumo:
There is a significant potential to improve the plant-beneficial effects of root-colonizing pseudomonads by breeding wheat genotypes with a greater capacity to sustain interactions with these bacteria. However, the interaction between pseudomonads and crop plants at the cultivar level, as well as the conditions which favor the accumulation of beneficial microorganisms in the wheat rhizosphere, is largely unknown. Therefore, we characterized the three Swiss winter wheat (Triticum aestivum) cultivars Arina, Zinal, and Cimetta for their ability to accumulate naturally occurring plant-beneficial pseudomonads in the rhizosphere. Cultivar performance was measured also by the ability to select for specific genotypes of 2,4-diacetylphloroglucinol (DAPG) producers in two different soils. Cultivar-specific differences were found; however, these were strongly influenced by the soil type. Denaturing gradient gel electrophoresis (DGGE) analysis of fragments of the DAPG biosynthetic gene phlD amplified from natural Pseudomonas rhizosphere populations revealed that phlD diversity substantially varied between the two soils and that there was a cultivar-specific accumulation of certain phlD genotypes in one soil but not in the other. Furthermore, the three cultivars were tested for their ability to benefit from Pseudomonas inoculants. Interestingly, Arina, which was best protected against Pythium ultimum infection by inoculation with Pseudomonas fluorescens biocontrol strain CHA0, was the cultivar which profited the least from the bacterial inoculant in terms of plant growth promotion in the absence of the pathogen. Knowledge gained of the interactions between wheat cultivars, beneficial pseudomonads, and soil types allows us to optimize cultivar-soil combinations for the promotion of growth through beneficial pseudomonads. Additionally, this information can be implemented by breeders into a new and unique breeding strategy for low-input and organic conditions.
Resumo:
Natural fluctuations in soil microbial communities are poorly documented because of the inherent difficulty to perform a simultaneous analysis of the relative abundances of multiple populations over a long time period. Yet, it is important to understand the magnitudes of community composition variability as a function of natural influences (e.g., temperature, plant growth, or rainfall) because this forms the reference or baseline against which external disturbances (e.g., anthropogenic emissions) can be judged. Second, definition of baseline fluctuations in complex microbial communities may help to understand at which point the systems become unbalanced and cannot return to their original composition. In this paper, we examined the seasonal fluctuations in the bacterial community of an agricultural soil used for regular plant crop production by using terminal restriction fragment length polymorphism profiling (T-RFLP) of the amplified 16S ribosomal ribonucleic acid (rRNA) gene diversity. Cluster and statistical analysis of T-RFLP data showed that soil bacterial communities fluctuated very little during the seasons (similarity indices between 0.835 and 0.997) with insignificant variations in 16S rRNA gene richness and diversity indices. Despite overall insignificant fluctuations, between 8 and 30% of all terminal restriction fragments changed their relative intensity in a significant manner among consecutive time samples. To determine the magnitude of community variations induced by external factors, soil samples were subjected to either inoculation with a pure bacterial culture, addition of the herbicide mecoprop, or addition of nutrients. All treatments resulted in statistically measurable changes of T-RFLP profiles of the communities. Addition of nutrients or bacteria plus mecoprop resulted in bacteria composition, which did not return to the original profile within 14 days. We propose that at less than 70% similarity in T-RFLP, the bacterial communities risk to drift apart to inherently different states.
Resumo:
Two bacterial strains that amplified part of the nifH gene, RP1p and RP2p, belonging to the genus Enterobacter and Serratia, were isolated from the rhizoplane of Lupinus albescens. These bacteria are Gram-negative, rod-shaped, motile, facultative anaerobic, and fast-growing; the colonies reach diameters of 3-4 mm within 24 h of incubation at 28 ºC. The bacteria were also able to grow at temperatures as high as 40 ºC, in the presence of high (2-3 % w/v) NaCl concentrations and pH 4 -10. Strain RP1p was able to utilize 10 of 14 C sources, while RP2p utilized nine. The isolates produced siderophores and indolic compounds, but none of them was able to solubilize phosphate. Inoculation of L. albescens with RP1p and RP2p strains resulted in a significant increase in plant dry matter, indicating the plant-growth-promoting abilities of these bacteria.
Resumo:
Soybean is a major grain crop in Brazil, and yields can be considerably improved by inoculation with selected Bradyrhizobium strains. However, the incompatibility between inoculation and seed treatments with fungicides and micronutrients represents a major barrier to the achievement of high rates of biological N2 fixation. Inoculation practices that can alleviate the negative effects of agrochemicals must therefore be found and in-furrow inoculation seems to be an attractive alternative. This study reports the results of seven field experiments conducted in three growing seasons in Brazil; three in soils previously cropped with inoculated soybean (> 10(4) cells g-1 of soil of Bradyrhizobium), and four in areas where the crop was sown for the first time (< 10² cells g-1 of soil of Bradyrhizobium). The compatibility with fungicides and micronutrients was compared in seeds inoculated with peat or liquid inoculants, or treated with different doses of liquid inoculant in-furrow. In areas with established Bradyrhizobium populations, seed-applied agrochemicals did generally not affect nodulation, but also did not increase yields, while inoculation always increased N grain accumulation or yield, and N fertilizer decreased both nodulation and yield. Where soybean was sown for the first time, the seed treatment with agrochemicals affected nodulation when applied together with peat or liquid inoculant. In-furrow inoculation alleviated the effects of seed treatment with agrochemicals; the best performance was achieved with high Bradyrhizobium cell concentrations, with up to 2.5 million cells seed-1.
Resumo:
The genetic diversity of ten Bradyrhizobium strains was evaluated for tolerance to high temperatures, to different salinity levels and for the efficiency of symbiosis with cowpea plants (Vigna unguiculata (L.) Walp.). Eight of these strains were isolated from nodules that appeared on cowpea after inoculation with suspensions of soil sampled from around the root system of Sesbania virgata (wand riverhemp) in ecosystems of South Minas Gerais. The other two strains used in our analyses as references, were from the Amazon and are currently recommended as cowpea inoculants. Genetic diversity was analyzed by amplifying repetitive DNA elements with the BOX primer, revealing high genetic diversity with each strain presenting a unique band profile. Leonard jar assays showed that the strains UFLA 03-30 and UFLA 03-38 had the highest N2-fixing potentials in symbiosis with cowpea. These strains had more shoot and nodule dry matter, more shoot N accumulation, and a higher relative efficiency than the strains recommended as inoculants. All strains grew in media of pH levels ranging from 4.0 to 9.0. The strains with the highest N2-fixing efficiencies in symbiosis with cowpea were also tolerant to the greatest number of antibiotics. However, these strains also had the lowest tolerance to high salt concentrations. All strains, with the exceptions of UFLA 03-84 and UFLA 03-37, tolerated temperatures of up to 40 ºC. The genetic and phenotypic characteristics of the eight strains isolated from soils of the same region were highly variable, as well as their symbiotic efficiencies, despite their common origin. This variability highlights the importance of including these tests in the selection of cowpea inoculant strains.
Resumo:
Soil pollution with hexachlorocyclohexane (HCH) has caused serious environmental problems. Here we describe the targeted degradation of all HCH isomers by applying the aerobic bacterium Sphingobium indicum B90A. In particular, we examined possibilities for large-scale cultivation of strain B90A, tested immobilization, storage and inoculation procedures, and determined the survival and HCH-degradation activity of inoculated cells in soil. Optimal growth of strain B90A was achieved in glucose-containing mineral medium and up to 65% culturability could be maintained after 60 days storage at 30 degrees C by mixing cells with sterile dry corncob powder. B90A biomass produced in water supplemented with sugarcane molasses and immobilized on corncob powder retained 15-20% culturability after 30 days storage at 30 degrees C, whereas full culturability was maintained when cells were stored frozen at -20 degrees C. On the contrary, cells stored on corncob degraded gamma-HCH faster than those that had been stored frozen, with between 15 and 85% of gamma-HCH disappearance in microcosms within 20 h at 30 degrees C. Soil microcosm tests at 25 degrees C confirmed complete mineralization of [(14)C]-gamma-HCH by corncob-immobilized strain B90A. Experiments conducted in small pits and at an HCH-contaminated agricultural site resulted in between 85 and 95% HCH degradation by strain B90A applied via corncob, depending on the type of HCH isomer and even at residual HCH concentrations. Up to 20% of the inoculated B90A cells survived under field conditions after 8 days and could be traced among other soil microorganisms by a combination of natural antibiotic resistance properties, unique pigmentation and PCR amplification of the linA genes. Neither the addition of corncob nor of corncob immobilized B90A did measurably change the microbial community structure as determined by T-RFLP analysis. Overall, these results indicate that on-site aerobic bioremediation of HCH exploiting the biodegradation activity of S. indicum B90A cells stored on corncob powder is a promising technology.
Resumo:
With the objective of verifying the response of Euterpe oleracea seedlings to seven arbuscular mycorrhizal fungi species, an experimental trial was carried out under greenhouse conditions. Seeds of E. oleracea were sown in carbonized rice husk. Germinating seeds were initially transferred to plastic cups, containing fumigated Reddish Yellow Quartz Sand and inoculated with arbuscular mycorrhizal fungi. Two months later, seedlings were transferred to 2 kg black plastic bags, containing the same soil without fumigation. Plant growth and mineral nutrients were evaluated nine months after mycorrhizal inoculation. Differential effects were observed among the species tested, with Scutellispora gilmorei being the most effective ones in promoting growth and nutrient content of E. oleracea seedlings. The increment resulted from inoculation with S. gilmorei were 92% in total plant height, 116% in stem diameter, 361% in dry matter production, 191% in N, 664% in P, 46% in K, 562% in Ca, 363% in Mg and 350% in Zn contents, comparing to uninoculated controls. Infected root length was positively correlated to nutrient content and plant growth. It was concluded that growth and nutrient uptake of E. oleracea seedlings could be significantly improved by inoculation of effective arbuscular mycorrhizal fungi.
Resumo:
Structural and regulatory genes involved in the synthesis of antimicrobial metabolites are essential for the biocontrol activity of fluorescent pseudomonads and, in principle, amenable to genetic engineering for strain improvement. An eventual large-scale release of such bacteria raises the question of whether such genes also contribute to the persistence and dissemination of the bacteria in soil ecosystems. Pseudomonas fluorescens wild-type strain CHA0 protects plants against a variety of fungal diseases and produces several antimicrobial metabolites. The regulatory gene gacA globally controls antibiotic production and is crucial for disease suppression in CHA0. This gene also regulates the production of extracellular protease and phospholipase. The contribution of gacA to survival and vertical translocation of CHA0 in soil microcosms of increasing complexity was studied in coinoculation experiments with the wild type and a gacA mutant which lacks antibiotics and some exoenzymes. Both strains were marked with spontaneous resistance to rifampin. In a closed system with sterile soil, strain CHA0 and the gacA mutant multiplied for several weeks, whereas these strains declined exponentially in nonsterile soil of different Swiss origins. The gacA mutant was less persistent in nonrhizosphere raw soil than was the wild type, but no competitive disadvantage when colonizing the rhizosphere and roots of wheat was found in the particular soil type and during the period studied. Vertical translocation was assessed after strains had been applied to undisturbed, long (60-cm) or short (20-cm) soil columns, both planted with wheat. A smaller number of cells of the gacA mutant than of the wild type were detected in the percolated water and in different depths of the soil column. Single-strain inoculation gave similar results in all microcosms tested. We conclude that mutation in a single regulatory gene involved in antibiotic and exoenzyme synthesis can affect the survival of P. fluorescens more profoundly in unplanted soil than in the rhizosphere.