1000 resultados para soil aggregation
Resumo:
ABSTRACT Tillage systems can influence C sequestration by changing aggregate formation and C distribution within the aggregate. This study was undertaken to explore the impact of no-tillage without straw (NT-S) and with straw (NT+S), and moldboard plow without straw (MP-S) and with straw (MP+S), on soil aggregation and aggregate-associated C after six years of double rice planting in a Hydragric Anthrosol in Guangxi, southwest of China. Soil samples of 0.00-0.05, 0.05-0.20 and 0.20-0.30 m layers were wet-sieved and divided into four aggregate-size classes, >2 mm, 2.00-0.25 mm, 0.25-0.053 and <0.053 mm, respectively, for measuring aggregate associated C and humic and fulvic acids. Results showed that the soil organic carbon (SOC) stock in bulk soil was 40.2-51.1 % higher in the 0.00-0.05 m layer and 11.3-17.0 % lower in the 0.05-0.20 m layer in NT system (NT+S and NT-S) compared to the MP system (MP+S and MP-S), respectively. However, no statistical difference was found across the whole 0.00-0.30 m layer. The NT system increased the proportion of >2 mm aggregate fraction and reduced the proportion of <0.053 mm aggregates in both 0.00-0.05 and 0.05-0.20 m layers. The SOC concentration, SOC stock and humic and fulvic acids within the >0.25 mm macroaggregate fraction also significantly increased in the 0.00-0.5 m layer in NT system. However, those within the 2.00-0.25 mm aggregate fraction were significantly reduced in the 0.05-0.200 m layer under NT system. Straw incorporation increased not only the SOC stock in bulk soil, but also the proportion of macroaggregate, aggregate associated with SOC and humic and fulvic acids concentration within the aggregate. The effect of straw on C sequestration might be dependent on the location of straw incorporation. In conclusion, the NT system increased the total SOC accumulation and humic and fulvic acids within macroaggregates, thus contributing to C sequestration in the 0.00-0.05 m layer.
Resumo:
An improved understanding of soil organic carbon (Corg) dynamics in interaction with the mechanisms of soil structure formation is important in terms of sustainable agriculture and reduction of environmental costs of agricultural ecosystems. However, information on physical and chemical processes influencing formation and stabilization of water stable aggregates in association with Corg sequestration is scarce. Long term soil experiments are important in evaluating open questions about management induced effects on soil Corg dynamics in interaction with soil structure formation. The objectives of the present thesis were: (i) to determine the long term impacts of different tillage treatments on the interaction between macro aggregation (>250 µm) and light fraction (LF) distribution and on C sequestration in plots differing in soil texture and climatic conditions. (ii) to determine the impact of different tillage treatments on temporal changes in the size distribution of water stable aggregates and on macro aggregate turnover. (iii) to evaluate the macro aggregate rebuilding in soils with varying initial Corg contents, organic matter (OM) amendments and clay contents in a short term incubation experiment. Soil samples were taken in 0-5 cm, 5-25 cm and 25-40 cm depth from up to four commercially used fields located in arable loess regions of eastern and southern Germany after 18-25 years of different tillage treatments with almost identical experimental setups per site. At each site, one large field with spatially homogenous soil properties was divided into three plots. One of the following three tillage treatments was carried in each plot: (i) Conventional tillage (CT) with annual mouldboard ploughing to 25-30 cm (ii) mulch tillage (MT) with a cultivator or disc harrow 10-15 cm deep, and (iii) no tillage (NT) with direct drilling. The crop rotation at each site consisted of sugar beet (Beta vulgaris L.) - winter wheat (Triticum aestivum L.) - winter wheat. Crop residues were left on the field and crop management was carried out following the regional standards of agricultural practice. To investigate the above mentioned research objectives, three experiments were conducted: Experiment (i) was performed with soils sampled from four sites in April 2010 (wheat stand). Experiment (ii) was conducted with soils sampled from three sites in April 2010, September 2011 (after harvest or sugar beet stand), November 2011 (after tillage) and April 2012 (bare soil or wheat stand). An incubation study (experiment (iii)) was performed with soil sampled from one site in April 2010. Based on the aforementioned research objectives and experiments the main findings were: (i) Consistent results were found between the four long term tillage fields, varying in texture and climatic conditions. Correlation analysis of the yields of macro aggregate against the yields of free LF ( ≤1.8 g cm-3) and occluded LF, respectively, suggested that the effective litter translocation in higher soil depths and higher litter input under CT and MT compensated in the long term the higher physical impact by tillage equipment than under NT. The Corg stocks (kg Corg m−2) in 522 kg soil, based on the equivalent soil mass approach (CT: 0–40 cm, MT: 0–38 cm, NT: 0–36 cm) increased in the order CT (5.2) = NT (5.2) < MT (5.7). Significantly (p ≤ 0.05) highest Corg stocks under MT were probably a result of high crop yields in combination with reduced physical tillage impact and effective litter incorporation, resulting in a Corg sequestration rate of 31 g C-2 m-2 yr-1. (ii) Significantly higher yields of macro aggregates (g kg-2 soil) under NT (732-777) and MT (680-726) than under CT (542-631) were generally restricted to the 0-5 cm sampling depth for all sampling dates. Temporal changes on aggregate size distribution were only small and no tillage induced net effect was detectable. Thus, we assume that the physical impact by tillage equipment was only small or the impact was compensated by a higher soil mixing and effective litter translocation into higher soil depths under CT, which probably resulted in a high re aggregation. (iii) The short term incubation study showed that macro aggregate yields (g kg-2 soil) were higher after 28 days in soils receiving OM (121.4-363.0) than in the control soils (22.0-52.0), accompanied by higher contents of microbial biomass carbon and ergosterol. Highest soil respiration rates after OM amendments within the first three days of incubation indicated that macro aggregate formation is a fast process. Most of the rebuilt macro aggregates were formed within the first seven days of incubation (42-75%). Nevertheless, it was ongoing throughout the entire 28 days of incubation, which was indicated by higher soil respiration rates at the end of the incubation period in OM amended soils than in the control soils. At the same time, decreasing carbon contents within macro aggregates over time indicated that newly occluded OM within the rebuilt macro aggregates served as Corg source for microbial biomass. The different clay contents played only minor role in macro aggregate formation under the particular conditions of the incubation study. Overall, no net changes on macro aggregation were identified in the short term. Furthermore, no indications for an effective Corg sequestration on the long term under NT in comparison to CT were found. The interaction of soil disturbance, litter distribution and the fast re aggregation suggested that a distinct steady state per tillage treatment in terms of soil aggregation was established. However, continuous application of MT with a combination of reduced physical tillage impact and effective litter incorporation may offer some potential in improving the soil structure and may therefore prevent incorporated LF from rapid decomposition and result in a higher C sequestration on the long term.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Ca-amendments are routinely applied to improve acid soils, whilst no-tillage (NT) has been widely recommended in soils where traditional tillage (TT) has led to losses of organic matter. However, the potential interactions between the two treatments are only partially known. Our study was conducted on an annual forage crop agrosystem with a degraded Palexerult soil located in SW Spain, in order to assess if the combination of NT plus a Ca-amendment provides additional benefits to those of their separate use. To this end we analysed the effects of four different combinations of tillage and Ca-amendment on selected key soil properties, focusing on their relationships. The experimental design was a split-plot with four replicates. The main factor was tillage (NT versus TT) and the second factor was the application or not of a Ca-amendment, consisting of a mixture of sugar foam (SF) and red gypsum (RG). Soil samples were collected from 3 soil layers down to 50 cm after four years of treatment (2009). The use of the Ca-amendment improved pH and Al-toxicity down to 25 cm and increased exchangeable Ca2+ down to 50 cm, even under NT due to the combined effect of SF and RG. Both NT and the Ca-amendment had a beneficial effect on total organic carbon (TOC), especially on particulate organic carbon (POC), in the 0–5 cm layer, with the highest contents observed when both practices were combined. Unlike NT, the Ca-amendment failed to improve soil aggregation in spite of the carbon supplied. This carbon was not protected within the stable aggregates in the medium term, making it more susceptible to mineralization. We suggest that the fraction of Al extracted by oxalate from solid phase (AlOxa-Cu-K) and the glomalin-related soil proteins (GRSPs) are involved in the accumulation of carbon within water stable aggregates, probably through the formation of non-toxic stable Al-OM compounds, including those formed with GRSPs. NT alone decreased AlK in the 0–5 cm soil layer, possibly by increasing POC, TOC and GRSPs, which were observed to play a role in reducing Al toxicity. From our findings, the combination of NT and Ca-amendment appears to be the best management practice to improve chemical and physical characteristics of acid soils degraded by tillage.
Resumo:
En los suelos, el exceso de acidez lleva asociado deficiencias en ciertos nutrientes y una alta disponibilidad de aluminio, tóxico para los cultivos propios del ambiente mediterráneo. Su laboreo, provoca la pérdida de materia orgánica (MO), deteriora su estructura y reduce la actividad biológica, provocando en última instancia una menor calidad del suelo. Es de esperar pues que cuando se labran suelos ácidos, sus problemáticas particulares tiendan a agravarse. En nuestra zona de estudio, la “raña” de Cañamero (Extremadura, España), predominan los suelos muy ácidos y degradados por un laboreo inadecuado. Las rañas constituyen amplias plataformas casi horizontales, con unos suelos muy viejos (Palexerults), que se caracterizan por tener el complejo de cambio dominado por el aluminio, y un pH ácido que decrece en profundidad. Poseen un potente horizonte Bt rico en arcillas caoliníticas, que propicia que en periodos con exceso de lluvia, se generen capas colgadas de agua cercanas a la superficie. En torno a los años 1940’s estos suelos, que previamente sostenían un alcornocal, o su matorral de sustitución, se pusieron en cultivo. El laboreo aceleró la mineralización de la materia orgánica, agravó los problemas derivados del exceso de acidez y condujo al abandono de los campos cultivados por falta de productividad. Para recuperar la calidad de estos suelos degradados y obtener unos rendimientos compatibles con su uso agrícola es necesario, por un lado, aplicar enmiendas que eleven el pH y reduzcan la toxicidad del aluminio y, por otro, favorecer el incremento en el contenido en MO. En 2005 se implantó en esta raña un ensayo de campo para estudiar la influencia del no laboreo y de la utilización de una enmienda cálcica en parámetros relacionados con la calidad del suelo en un cultivo forrajero. El diseño experimental fue en parcelas divididas con cuatro repeticiones donde el factor principal fue el tipo de laboreo, no laboreo (NL) frente a laboreo convencional (LC), y el factor secundario el uso o no de una enmienda cálcica. La enmienda consistió básicamente en una mezcla de espuma de azucarería y yeso rojo y se incorporó al comienzo del ensayo hasta los 7 cm de profundidad. Desde el comienzo del ensayo el NL influyó positivamente en el contenido de carbono orgánico total (COT) y particulado (COP), mientras que la enmienda tuvo una ligera influencia al principio del ensayo en ambos pero su efecto positivo se desvaneció con el paso del tiempo. Los mayores contenidos en COT y POC se observaron cuando se combinó el NL con la enmienda. La enmienda incrementó con rapidez el pH, y el Ca, y disminuyó el contenido en aluminio hasta una profundidad de 50 cm, incluso en NL, y mejoró ligeramente la agregación del suelo. El NL por sí solo, gracias al aumento en POC, TOC y las proteínas del suelo relacionadas con la glomalina (PSRG), que son capaces de formar compuestos estables no tóxicos con el aluminio, también contribuyó a la reducción de la toxicidad de aluminio en la capa más superficial. Cuando en las campañas con exceso de precipitaciones se generaron capas colgadas de agua próximas a la superficie, el NL generó unas condiciones más favorables para la germinación y desarrollo del cultivo, resultando en una producción más alta que el LC. A ello contribuyó la mayor capacidad de almacenamiento de agua y la mayor transmisividad de esta hacia abajo, en la capa más superficial (0-5 cm) que propició una menor saturación por agua que el LC. Respecto a los parámetros relacionados con la agregación, el NL aumentó los macroagregados hasta los 10 cm de profundidad y favoreció la acumulación de CO y N en todas las fracciones de tamaño de agregados. Sin embargo, la recuperación del grado de macroagregación tras el cese del laboreo resulta lenta en comparación con otros suelos, posiblemente debido al bajo contenido en arcilla en el horizonte Ap. En comparación con el NL, la enmienda mostró también un efecto positivo, aunque muy ligero, en la agregación del suelo. En contradicción con otros estudios en suelos ácidos, nuestros resultados indican la existencia de una jerarquía de agregados, y destacan el papel importante de la MO en la mejora de la agregación. Tanto el NL como la enmienda favorecieron por separado varias propiedades químicas, físicas y biológicas del suelo, pero, en general, encontramos los mayores beneficios con su uso combinado. Además, a largo plazo el efecto positivo de NL en las propiedades del suelo fue en aumento, mientras que el efecto beneficioso de la enmienda se limitó básicamente a las propiedades químicas y se desvaneció en pocos años. Destacamos que las condiciones meteorológicas a lo largo del ensayo beneficiaron la producción de biomasa en NL, y en consecuencia las propiedades relacionadas con la materia orgánica, por lo que son un factor a tener en cuenta a la hora de evaluar los efectos de la enmienda y el laboreo sobre las propiedades del suelo, especialmente en zonas donde esas condiciones son muy variables entre una campaña y otra. Los resultados de este estudio han puesto de manifiesto que el NL no ha mermado la eficacia de la enmienda caliza, posiblemente gracias a la alta solubilidad de la enmienda aplicada, es más, el manejo con NL y enmienda es el que ha favorecido en mayor medida ciertos parámetros de calidad del suelo. Por el contrario el LC sí parece anular los beneficios de la enmienda en relación con las propiedades relacionadas con la MO. Por tanto, cabe concluir que la combinación de NL y la enmienda es una práctica adecuada para mejorar las propiedades químicas y físicas de suelos ácidos degradados por el laboreo. ABSTRACT Excessive acidity in soils is associated with deficiencies in certain nutrients and high concentrations of available aluminum, which is toxic for most Mediterranean crops. Tilling these soils results in the loss of soil organic matter (SOM), damages soil structure and reduces biological activity, ultimately degrading soil quality. It is expected, therefore, that when acid soils are tilled, their particular problems will tend to get worse. In our study area, the "Cañamero’s Raña” (Extremadura, Spain), acid soils degraded by an inappropriate tillage prevail. Rañas are large and flat platforms with very old soils (Palexerults), which are characterized by an exchange complex dominated by aluminum and an acid pH which decreases with depth. These soils have a strong Bt horizon rich in kaolinite clays, which encourages the formation of perched water-tables near the soil surface during periods of excessive rain. During the first third of the 20th century, these soils, that previously supported cork oak or its scrub replacement, were cultivated. Tillage accelerated the mineralization of the SOM, aggravating the problems of excessive acidity, which finally led to the abandonment of the land due to low productivity. To recover the quality of these degraded soils and to obtain consistent yields it is necessary, first, to apply amendments to raise the pH and reduce aluminum toxicity, and second to encourage the accumulation of SOM. In 2005 a field trial was established in the Raña to study the influence of no-tillage and the use of a Ca-amendment on soil quality related parameters in a forage crop agrosystem. The experimental design was a split-plot with four replicates where the main factor was tillage type, no-tillage (NT) versus traditional tillage (TT) and the secondary factor was the use or not of a Ca-amendment. The Ca-amendment was a mixture of sugar foam and red gypsum that was incorporated into the top 7 cm of the soil. Since the beginning of the experiment, NT had a positive influence on total and particulate organic carbon (TOC and POC, respectively), while the Ca-amendment had a small positive influence at the beginning of the study but its effect diminished with time. The highest TOC and POC contents were observed when NT and the Ca-amendment were combined. The Ca-amendment, even under NT, rapidly increased pH and Ca, and decreased the aluminum content to a depth of 50 cm, as well as improving soil aggregation slightly. NT, due to the increased POC, TOC and Glomalin-related soil proteins (GRSP), which can form stable non-toxic compounds with aluminum, also contributed to the reduction of aluminum toxicity in the upper layer. When perched water-tables near the soil surface were formed in campaigns with excessive rainfall, NT provided more favorable conditions for germination and crop development, resulting in higher yields compared with TT. This was directly related to the higher water storage capacity and the greater transmissivity of the water downwards from the upper layers, which led to lower water saturation under NT compared with TT. With regards to the aggregation-related parameters, NT increased macroaggregation to a depth of 10 cm and favored the accumulation of OC and N in all aggregate size fractions. However, the degree of recovery of macroaggregation after tillage ceased was slow compared with other soils, possibly due to the low clay content in the Ap horizon. Compared with NT, the Ca-amendment had a slight positive effect on soil aggregation. In contrast to other studies in acid soils, our results indicate the existence of an aggregate hierarchy, and highlight the important role of SOM in improving aggregation. Both NT and the Ca-amendment separately favored various chemical, physical and biological soil properties, but in general we found the greatest benefits when the two treatments were combined. In addition, the positive effect of NT on soil properties increased with time, while the beneficial effect of the Ca-amendment, which was limited to the chemical properties, vanished after a few years. It is important to note that the meteorological conditions throughout the experiment benefited biomass production under NT and, as a consequence, organic matter related properties. This suggests that meteorological conditions are a factor to consider when evaluating the effects of Ca-amendments and tillage on soil properties, especially in areas where such conditions vary significantly from one campaign to another. The results of this study show that NT did not diminish the effectiveness of the Ca-amendment, possibly due to the high solubility of the selected amendment. Moreover, the combination of NT and the Ca-amendment was actually the management that favored certain soil quality parameters the most. By contrast, TT seemed to nullify the benefits of the Ca-amendment with regards to the OM related properties. In conclusion, the combination of NT and the application of a Ca-amendment is an advisable practice for improving the chemical and physical properties of acid soils degraded by tillage.
Resumo:
Soil organic matter (SOM) is important to fertility, since it performs several functions such as cycling, water and nutrient retention and soil aggregation, in addition to being an energy requirement for biological activity. This study proposes new trends to the Embrapa, Walkley-Black, and Mebius methods that allowed the determination of SOM by spectrophotometry, increasing functionality. The mass of 500 mg was reduced to 200 mg, generating a mean of 60 % saving of reagents and a decrease of 91 % in the volume of residue generated for the three methods without compromising accuracy and precision. We were able to optimize conditions for the Mebius method and establish the digestion time of maximum recovery of SOM by factorial design and response surface. The methods were validated by the estimate of figures of merits. Between the methods investigated, the optimized Mebius method was best suited for determining SOM, showing near 100 % recovery.
Resumo:
El objetivo del presente proyecto ha sido estudiar los efectos del biochar en el modelo jerárquico de agregación del suelo. Para estudiar estas propiedades se ha realizado una incubación de tres tratamientos de biochar Miscanthus (biochar 10t/ha (B10), 2t/ha (B2) y 10t/ha+Nitrógeno (BN), durante 91 días, realizando fraccionamientos en húmedo de las muestras los días 28, 43, 63, 77 y 91. En estos fraccionamientos se han separado las fracciones macroagregrado (LMagg+Magg), microagregados (magg), limos (Silt) y arcillas (Clay). Por último se determinó el C orgánico de todas las fracciones de los tratamientos obtenidos con el objeto de obtener información sobre el efecto que puede tener la aplicación del biochar sobre la estabilización de C en las fracciones del suelo. Los resultados obtenidos indican que con la aplicación de biochar, la teoría jerárquica de agregación propuesta por Tisdall y Oades (1982), no se cumple en la dinámica de agregación del suelo, si bien se puede observar una jerarquía en la estabilización del C orgánico en los macroagregados y microagregados. Además las dosis altas de biochar producen mayor cantidad de microagregados, favoreciendo el secuestro de C en el suelo. Por otro lado, con dosis altas de biochar se aprecia una disminución de la fracción de macroagregados, hecho que puede influir negativamente en la estructura del suelo.
Resumo:
Soil is the basis underlying the food production chain and it is fundamental to improve and conserve its productive capacity. Imbalanced exploitation can degrade agricultural areas physical, chemical and biologically. The objective of this study was to evaluate some soil physical properties and their relation with organic carbon contents of a Humic Dystrudept under conventional tillage (CT) and no-tillage (NT), for 12 years in rotation (r) and succession (s) cropping systems. The experiment was carried out in Lages, SC (latitude 27 º 49 ' S and longitude 50 º 20 ' W, 937 m asl), using crop sequences of bean-fallow-maize-fallow-soybean in conventional tillage rotation; maize-fallow in conventional tillage succession; bean-oat-maize-turnip-soybean-vetch in no-tillage rotation; and maize-vetch in no-tillage succession. The experimental design was completely randomized with four replications. The soil samples were collected in the layers 0-2.5, 2.5-5, 5-10, and 10-20 cm. The following properties were analyzed: soil density, porosity, aggregate stability, degree of flocculation, water retention, infiltration, mechanical strength, and total organic carbon. Soil aggregation in the surface layer (0-5 cm) was better in the no-tillage than the conventional system, related to higher microporosity, organic carbon contents and water retention capacity, indicating that a periodical tillage of this soil is unnecessary. Infiltration was highest in no-tillage with crop succession.
Resumo:
The process of biological nitrogen fixation (BNF), performed by symbiotic nitrogen fixing bacteria with legume species, commonly known as α and β rhizobia, provides high sustainability for the ecosystems. Its management as a biotechnology is well succeeded for improving crop yields. A remarkable example of this success is the inoculation of Brazilian soybeans with Bradyrhizobium strains. Rhizobia produce a wide diversity of chemical structures of exopolysaccharides (EPS). Although the role of EPS is relatively well studied in the process of BNF, their economic and environmental potential is not yet explored. These EPS are mostly species-specific heteropolysaccharides, which can vary according to the composition of sugars, their linkages in a single subunit, the repeating unit size and the degree of polymerization. Studies have showed that the EPS produced by rhizobia play an important role in the invasion process, infection threads formation, bacteroid and nodule development and plant defense response. These EPS also confer protection to these bacteria when exposed to environmental stresses. In general, strains of rhizobia that produce greater amounts of EPS are more tolerant to adverse conditions when compared with strains that produce less. Moreover, it is known that the EPS produced by microorganisms are widely used in various industrial activities. These compounds, also called biopolymers, provide a valid alternative for the commonly used in food industry through the development of products with identical properties or with better rheological characteristics, which can be used for new applications. The microbial EPS are also able to increase the adhesion of soil particles favoring the mechanical stability of aggregates, increasing levels of water retention and air flows in this environment. Due to the importance of EPS, in this review we discuss the role of these compounds in the process of BNF, in the adaptation of rhizobia to environmental stresses and in the process of soil aggregation. The possible applications of these biopolymers in industry are also discussed.
Resumo:
Analyzing the soil near crop roots may reveal limitations to growth and yield even in a no-tillage system. The purpose of the present study was to relate the chemical and physical properties of soil under a no-tillage system to soybean root growth and plant yield after five years of use of different types of limestone and forms of application. A clayey Oxisol received application of dolomitic and calcitic limestones and their 1:1 combination in two forms: surface application, maintained on the soil surface; and incorporated, applied on the surface and incorporated mechanically. Soil physical properties (resistance to mechanical penetration, soil bulk density and soil aggregation), soil chemical properties (pH, exchangeable cations, H+Al, and cation exchange capacity) and plant parameters (root growth system, soybean grain yield, and oat dry matter production) were evaluated five years after setting up the experiment. Incorporation of lime neutralized exchangeable Al up to a depth of 20 cm without affecting the soil physical properties. The soybean root system reached depths of 40 cm or more with incorporated limestone, increasing grain yield an average of 31 % in relation to surface application, which limited the effect of lime up to a depth of 5 cm and root growth up to 20 cm. It was concluded that incorporation of limestone at the beginning of a no-tillage system ensures a favorable environment for root growth and soybean yield, while this intervention does not show long-term effects on soil physical properties under no-tillage. This suggests that there is resilience in the physical properties evaluated.
Resumo:
ABSTRACT The combustion of rice husk generates a partially burnt mixture called rice husk ash (RHA) that can be used as a source of nutrients to crops and as a conditioner of soil physical properties. The objective of this study was to evaluate the effect of RHA levels on the hydro-physical properties of a Typic Hapludult. The experimental design was composed of random blocks with four replications, which comprised plots of 24 m2 and treatments with increasing RHA rates: 0, 40, 80 and 120 Mg ha-1. Undisturbed soil samples were collected in the soil layers of 0.00-0.10 and 0.10-0.20 m after nine months of RHA application, using steel cylinders (0.03 m of height and 0.047 m of diameter). These samples were used to determine soil bulk density (Bd), total soil porosity (TP), soil macroporosity (Ma), soil microporosity (Mi) and the available water capacity (AWC). Disturbed soil samples were collected to determine the stability of soil aggregates in water, mean weight diameter of water stable aggregates (MWD), and soil particle size distribution. The results show that, as the RHA rate increased in the soil, Bd values decreased and TP, Ma and MWD values increased. No effect of RHA was found on Mi and AWC values. The effects of RHA on the S parameter (Dexter, 2004), precompression stress and compression index (Dias Junior and Pierce, 1995) values are consistent those shown for density and total porosity. Rice husk ash was shown to be an efficient residue to improve soil physical properties, mainly at rates between 40 and 80 Mg ha-1. Rice husk ash reduces bulk density and increases total porosity, macroporosity and soil aggregation, but does not affect microporosity, field capacity, permanent wilting point, and available water capacity of the soil. The effect of rice husk ash on the S parameter, precompression stress and index compressibility coefficient values are consistent with those observed for the bulk density and total porosity.
Resumo:
A utilização de resíduos da indústria de processamento de frutas na agricultura pode proporcionar melhorias à qualidade do solo. Dessa forma, objetivou-se com este estudo avaliar o efeito da aplicação de resíduos de sementes de goiaba na agregação e no estoque de carbono orgânico do solo (EC). O experimento esteve inserido em um pomar comercial irrigado de goiabeiras (cv. Paluma), com sete anos de idade, sobre um Argissolo Vermelho-Amarelo distrófico típico. O delineamento experimental foi em blocos casualizados e parcelas subdivididas, sendo cinco tratamentos (doses de: 0;9;18;27 e 36 Mg ha-1 de resíduo) e duas camadas de solo (0-0,10 e 0,10-0,20 m). Foi avaliado o mesmo tipo de solo sobre mata nativa adjacente à área experimental. As análises realizadas foram a distribuição do tamanho dos agregados estáveis em água, o diâmetro médio ponderado, o diâmetro médio geométrico, os agregados maiores que 2 mm e o EC. Os dados foram submetidos à análise de variância (Teste F), seguindo o delineamento em blocos casualizados com parcelas subdivididas (5 doses x 2 camadas). As médias dos tratamentos foram comparadas pelo teste de Tukey, a 5% de probabilidade, e as médias das camadas foram comparadas pelo teste F, a 5% de probabilidade. Os dados coletados no solo sob mata foram utilizados apenas como referência de um solo em estado natural e, portanto, não foram considerados como fator de variação nas análises de variância. Os valores dos índices de agregação com o estoque de carbono orgânico do solo foram submetidos à correlação de Pearson (p < 0,05). O efeito das doses de resíduo de sementes de goiaba sobre o estoque de carbono orgânico, na camada de 0-0,20 m do solo, foi avaliado por análise de regressão. Os tratamentos não diferiram em relação à agregação do solo, contudo EC foi diretamente relacionado à quantidade de resíduo aplicado ao solo. Houve correlação positiva e significativa entre os índices de agregação e o EC. A aplicação de resíduos de sementes de goiaba proporcionou melhoria da qualidade do solo.
Resumo:
The objective of this work was to evaluate the soil physics and chemical attributes of Rhodic Ferralsol, in sugarcane systems harvest compared with soil forest. The treatments were consisted by native forest, manual and mechanized sugarcane harvesting. The soil was sampled at 0-0.10; 0.10-0.20 and 0.20-0.30 m soil depths. The soil organic matter, pH and PCZ values, flocculation degree and soil aggregation were evaluated in each soil sample. The statistics analysis was carried in a split-plot completely randomized design with five replications, exception for the soil aggregation,, with six replications The soil under MN, the soil organic matter and aggregates percentage (7.93 mm class) were higher. The higher mean weigh diameter aggregates was observed at 0-0.20 soil depth, in MN.
Resumo:
A erodibilidade é um fator de extrema importância na caracterização da perda de solo, representando os processos que regulam a infiltração de água e sua resistência à desagregação e o transporte de partículas. Assim, por meio da análise de dependência espacial dos componentes principais da erodibilidade (fator K), objetivou-se estimar a erodibilidade do solo em uma área de nascentes da microbacia do Córrego do Tijuco, Monte Alto-SP, e analisar a variabilidade espacial das variáveis granulométricas do solo ao longo do relevo. A erodibilidade média da área foi considerada alta, e a análise de agrupamento k-means apontou para uma formação de cinco grupos: no primeiro, os altos teores de areia grossa (AG) e média (AM) condicionaram sua distribuição nas áreas planas; o segundo, caracterizado pelo alto teor de areia fina (AF), distribui-se nos declives mais convexos; o terceiro, com altos teores de silte e areia muito fina (AMF), concentrou-se nos maiores declives e concavidades; o quarto, com maior teor de argila, seguiu as zonas de escoamento de água; e o quinto, com alto teor de matéria orgânica (MO) e areia grossa (AG), distribui-se nas proximidades da zona urbana. A análise de componentes principais (ACP) mostrou quatro componentes com 87,4 % das informações, sendo o primeiro componente principal (CP1) discriminado pelo transporte seletivo de partículas principalmente em zonas pontuais de maior declividade e acúmulo de sedimentos; o segundo (CP2), discriminado pela baixa coesão entre as partículas, mostra acúmulo da areia fina nas áreas de menor cota em toda a área de concentração de água; o terceiro (CP3), discriminado pela maior agregação do solo, concentra-se principalmente nas bases de grandes declives; e o quarto (CP4), discriminado pela areia muito fina, distribui-se ao longo das declividades nas maiores altitudes. Os resultados sugerem o comportamento granulométrico do solo, que se mostra suscetível ao processo erosivo devido às condições texturais superficiais e à movimentação do relevo.
Resumo:
This study aimed to evaluate the effect of time since the adoption of the no-till system, in comparison with a native forest area and a conventional tillage area, using the distribution of soil aggregates in a Distroferric Red Nitosol. Treatments were as follows: native forest (NF), conventional tillage (CT), no-till for one year (NT1), no-till for four years (NT4), no-till for five years (NT5), and no-till for 12 years (NT12). Aggregate samples were collected randomly within each treatment at depths of 0-5 and 10-15 cm. After sifting the aggregates in water they were separated into the following aggregate classes > 2 mm; < 2 mm; 2-1 mm, and < 1 mm. The adoption time in the no-till system favored soil aggregation. The mean weighted diameter (MWD) of the soil aggregates and the percentage of aggregates greater than 2 mm increased with adoption time in the no-till system at the 0-5 cm depth. The NF and NT12 treatments had higher MWD values in the 0-5 cm layer. CT had the highest percentage of aggregates smaller than 1 mm.