879 resultados para smart grids
Resumo:
The increase of distributed generation (DG) has brought about new challenges in electrical networks electricity markets and in DG units operation and management. Several approaches are being developed to manage the emerging potential of DG, such as Virtual Power Players (VPPs), which aggregate DG plants; and Smart Grids, an approach that views generation and associated loads as a subsystem. This paper presents a multi-level negotiation mechanism for Smart Grids optimal operation and negotiation in the electricity markets, considering the advantages of VPPs’ management. The proposed methodology is implemented and tested in MASCEM – a multiagent electricity market simulator, developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations.
Resumo:
Power system organization has gone through huge changes in the recent years. Significant increase in distributed generation (DG) and operation in the scope of liberalized markets are two relevant driving forces for these changes. More recently, the smart grid (SG) concept gained increased importance, and is being seen as a paradigm able to support power system requirements for the future. This paper proposes a computational architecture to support day-ahead Virtual Power Player (VPP) bid formation in the smart grid context. This architecture includes a forecasting module, a resource optimization and Locational Marginal Price (LMP) computation module, and a bid formation module. Due to the involved problems characteristics, the implementation of this architecture requires the use of Artificial Intelligence (AI) techniques. Artificial Neural Networks (ANN) are used for resource and load forecasting and Evolutionary Particle Swarm Optimization (EPSO) is used for energy resource scheduling. The paper presents a case study that considers a 33 bus distribution network that includes 67 distributed generators, 32 loads and 9 storage units.
Resumo:
The future scenarios for operation of smart grids are likely to include a large diversity of players, of different types and sizes. With control and decision making being decentralized over the network, intelligence should also be decentralized so that every player is able to play in the market environment. In the new context, aggregator players, enabling medium, small, and even micro size players to act in a competitive environment, will be very relevant. Virtual Power Players (VPP) and single players must optimize their energy resource management in order to accomplish their goals. This is relatively easy to larger players, with financial means to have access to adequate decision support tools, to support decision making concerning their optimal resource schedule. However, the smaller players have difficulties in accessing this kind of tools. So, it is required that these smaller players can be offered alternative methods to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), intended to support smaller players’ resource scheduling. The used methodology uses a training set that is built using the energy resource scheduling solutions obtained with a reference optimization methodology, a mixed-integer non-linear programming (MINLP) in this case. The trained network is able to achieve good schedule results requiring modest computational means.
Resumo:
Smart grids are envisaged as infrastructures able to accommodate all centralized and distributed energy resources (DER), including intensive use of renewable and distributed generation (DG), storage, demand response (DR), and also electric vehicles (EV), from which plug-in vehicles, i.e. gridable vehicles, are especially relevant. Moreover, smart grids must accommodate a large number of diverse types or players in the context of a competitive business environment. Smart grids should also provide the required means to efficiently manage all these resources what is especially important in order to make the better possible use of renewable based power generation, namely to minimize wind curtailment. An integrated approach, considering all the available energy resources, including demand response and storage, is crucial to attain these goals. This paper proposes a methodology for energy resource management that considers several Virtual Power Players (VPPs) managing a network with high penetration of distributed generation, demand response, storage units and network reconfiguration. The resources are controlled through a flexible SCADA (Supervisory Control And Data Acquisition) system that can be accessed by the evolved entities (VPPs) under contracted use conditions. A case study evidences the advantages of the proposed methodology to support a Virtual Power Player (VPP) managing the energy resources that it can access in an incident situation.
Resumo:
A multilevel negotiation mechanism for operating smart grids and negotiating in electricity markets considers the advantages of virtual power player management.
Resumo:
Intensive use of Distributed Generation (DG) represents a change in the paradigm of power systems operation making small-scale energy generation and storage decision making relevant for the whole system. This paradigm led to the concept of smart grid for which an efficient management, both in technical and economic terms, should be assured. This paper presents a new approach to solve the economic dispatch in smart grids. The proposed methodology for resource management involves two stages. The first one considers fuzzy set theory to define the natural resources range forecast as well as the load forecast. The second stage uses heuristic optimization to determine the economic dispatch considering the generation forecast, storage management and demand response
Resumo:
In the energy management of a small power system, the scheduling of the generation units is a crucial problem for which adequate methodologies can maximize the performance of the energy supply. This paper proposes an innovative methodology for distributed energy resources management. The optimal operation of distributed generation, demand response and storage resources is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The paper deals with a vision for the grids of the future, focusing on conceptual and operational aspects of electrical grids characterized by an intensive penetration of DG, in the scope of competitive environments and using artificial intelligence methodologies to attain the envisaged goals. These concepts are implemented in a computational framework which includes both grid and market simulation.
Resumo:
A distributed, agent-based intelligent system models and simulates a smart grid using physical players and computationally simulated agents. The proposed system can assess the impact of demand response programs.
Resumo:
Demand response has gained increasing importance in the context of competitive electricity markets and smart grid environments. In addition to the importance that has been given to the development of business models for integrating demand response, several methods have been developed to evaluate the consumers’ performance after the participation in a demand response event. The present paper uses those performance evaluation methods, namely customer baseline load calculation methods, to determine the expected consumption in each period of the consumer historic data. In the cases in which there is a certain difference between the actual consumption and the estimated consumption, the consumer is identified as a potential cause of non-technical losses. A case study demonstrates the application of the proposed method to real consumption data.
Resumo:
The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.
Resumo:
The reactive power management in distribution network with large penetration of distributed energy resources is an important task in future power systems. The control of reactive power allows the inclusion of more distributed recourses and a more efficient operation of distributed network. Currently, the reactive power is only controlled in large power plants and in high and very high voltage substations. In this paper, several reactive power control strategies considering a smart grids paradigm are proposed. In this context, the management of distributed energy resources and of the distribution network by an aggregator, namely Virtual Power Player (VPP), is proposed and implemented in a MAS simulation tool. The proposed methods have been computationally implemented and tested using a 32-bus distribution network with intensive use of distributed resources, mainly the distributed generation based on renewable resources. Results concerning the evaluation of the reactive power management algorithms are also presented and compared.
Resumo:
Demand response programs and models have been developed and implemented for an improved performance of electricity markets, taking full advantage of smart grids. Studying and addressing the consumers’ flexibility and network operation scenarios makes possible to design improved demand response models and programs. The methodology proposed in the present paper aims to address the definition of demand response programs that consider the demand shifting between periods, regarding the occurrence of multi-period demand response events. The optimization model focuses on minimizing the network and resources operation costs for a Virtual Power Player. Quantum Particle Swarm Optimization has been used in order to obtain the solutions for the optimization model that is applied to a large set of operation scenarios. The implemented case study illustrates the use of the proposed methodology to support the decisions of the Virtual Power Player in what concerns the duration of each demand response event.
Resumo:
An intensive use of dispersed energy resources is expected for future power systems, including distributed generation, especially based on renewable sources, and electric vehicles. The system operation methods and tool must be adapted to the increased complexity, especially the optimal resource scheduling problem. Therefore, the use of metaheuristics is required to obtain good solutions in a reasonable amount of time. This paper proposes two new heuristics, called naive electric vehicles charge and discharge allocation and generation tournament based on cost, developed to obtain an initial solution to be used in the energy resource scheduling methodology based on simulated annealing previously developed by the authors. The case study considers two scenarios with 1000 and 2000 electric vehicles connected in a distribution network. The proposed heuristics are compared with a deterministic approach and presenting a very small error concerning the objective function with a low execution time for the scenario with 2000 vehicles.
Resumo:
De forma a não comprometer o conforto ou a qualidade de vida, nos dias de hoje, é obrigatório que a energia elétrica esteja presente. Sendo indispensável, torna-se necessário assegurar que a sua distribuição seja feita da forma mais qualitativa possível. Uma resposta rápida e eficaz a possíveis falhas que ocorram na rede, irá garantir a tal qualidade de serviço desejada. Para isso, a automatização dos processos é uma grande evolução e objetivo de concretização do setor elétrico. Neste contexto surge o conceito de Smart Grid, que tem como principal objetivo a combinação entre o setor elétrico e a evolução da tecnologia. A par desta característica, estes tipos de redes vêm também trazer evoluções no âmbito ambiental, pois a produção de energia elétrica é feita, maioritariamente, por fontes de energia renovável. Este projeto incide na análise das vantagens técnicas e económicas da inclusão de equipamentos que detêm capacidades de armazenamento de energia, as Baterias de Armazenamento de Energia (BAE), neste tipo de redes. Para tal, procedeu-se à utilização do método do Despacho Económico, que tem como principal objetivo a determinação dos níveis de produção de todas as unidades geradoras do sistema, satisfazendo a carga, ao mais baixo custo de produção. Com este método, foram criados vários cenários de estudo com vista a validar todo o propósito deste projeto. Nesta dissertação, é também realizado um estudo de viabilidade económica destes equipamentos de armazenamento de energia.
Resumo:
Collectively small and medium sized enterprises (SMEs) are significant energy users although many are unregulated by existing policies due to their low carbon emissions. Carbon reduction is often not a priority but smart grids may create a new opportunity. A smart grid will give electricity suppliers a picture of real-time energy flows and the opportunity for consumers to receive financial incentives for engaging in demand side management. As well as creating incentives for local carbon reduction, engaging SMEs with smart grids has potential for contributing to wider grid decarbonisation. Modelling of buildings, business activities and technology solutions is needed to identify opportunities for carbon reduction. The diversity of the SME sector complicates strategy development. SMEs are active in almost every business area and occupy the full range of property types. This paper reviews previous modelling work, exposing valuable data on floor space and energy consumption associated with different business activities. Limitations are seen with the age of this data and an inability to distinguish SME energy use. By modelling SME energy use, electrical loads are identified which could be shifted on demand, in a smart network. Initial analysis of consumption, not constrained by existing policies, identifies heating and cooling in retail and commercial offices as having potential for demand response. Hot water in hotel and catering and retail sectors may also be significant because of the energy storage potential. Areas to consider for energy efficiency schemes are also indicated.