925 resultados para sludge storage
Resumo:
Background: Glycogen storage disease type 0 is an autosomal recessive disease presenting in infancy or early childhood and characterized by ketotic hypoglycemia after prolonged fasting and postprandial hyperglycemia and hyperlactatemia. Sixteen different mutations have been identified to date in the gene which encodes hepatic glycogen synthase, resulting in reduction of glycogen storage in the liver. Case Presentation: Biochemical evaluation as well as direct sequencing of exons and exon-intron boundary regions of the GYS2 gene were performed in a patient presenting fasting hypoglycemia and postprandial hyperglycemia and her parents. The patient was found to be compound heterozygous for one previously reported nonsense mutation (c. 736 C>T; R243X) and a novel frameshift mutation (966_967delGA/insC) which introduces a stop codon 21 aminoacids downstream from the site of the mutation that presumably leads to loss of 51% of the COOH-terminal part of the protein. The glycemia and lactatemia of the parents after an oral glucose tolerance test were evaluated to investigate a possible impact of the carrier status on the metabolic profile. The mother, who presented a positive family history of type 2 diabetes, was classified as glucose intolerant and the father, who did not exhibit metabolic changes after the glucose overload, had an antecedent history of hypoglycemia after moderate alcohol ingestion. Conclusion: The current results expand the spectrum of known mutations in GYS2 and suggest that haploinsufficiency could explain metabolic abnormalities in heterozygous carriers in presence of predisposing conditions.
Resumo:
Clinical trials using dendritic cells (DCs) to treat cancer patients have generated promising results in recent years. However, even simple aspects of this therapy are still not well understood, including the storage and distribution of manufactured vaccines. These processes are essential and must be elucidated in order to reduce costs. We evaluated the effects of different storage conditions on vaccine functionality using mixed lymphocyte reaction (MLR). Vaccine storage at 4 degrees C for up to 72 h had no significant effect on vaccine activity. Shipping to distant places is possible, if vaccines are kept at 4 degrees C and used up to 3 days after manufacture date.
Resumo:
The Cerrado and Amazon regions of Brazil are probably the largest agricultural frontier of the world, and Could be a sink or source for C depending on the net effect of land use change and subsequent management on soil organic C pools. We evaluated the effects of agricultural management systems on soil organic C (SOC) stocks in the Brazilian states of Rondonia and Mato Grosso, and derived regional specific factors for soil C stock change associated with different management systems. We used 50 observations (data points) in this study, including 42 dealing with annual cropping practices and 8 dealing with perennial cropping, and analyzed the data in linear mixed-effect models. No tillage (NT) systems in Cerrado areas increased SOC Storage by 1.08 +/- 0.06 relative to SOC stocks under native conditions, while SOC storage increased by a modest factor of 1.01 +/- 0.17 in Cerradao and Amazon Forest conditions. Full tillage (FT) had negative effect on SOC storage relative to NT, decreasing SOC stocks by a factor of 0.94 +/- 0.04. but did not significantly reduce SOC stocks relative to native levels when adopted in the Cerrado region. Perennial cropping had a minimal impact on SOC stocks, estimated at a factor Value of 0.98 +/- 0.14, suggesting these systems maintain about 98% of the SOC stock found under native vegetation. The results Suggest that NT adoption may be increasing SOC with land use change from native vegetation to cropland management in the Cerrado region of Brazil. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study investigated the representativeness of samples for assessing chemical elements in milk bulk tanks. Milk samples were collected from a closed tank in a dairy plant and from an open top tank in a dairy farm. Samples were analyzed for chemical elements by instrumental neutron activation analysis (INAA). For both experiments, Br, Ca, Cs, K, Na, Rb and Zn did not present significant differences between samples thereby indicating the appropriateness of the sampling procedure adopted to evaluate the analytes of interest.
Resumo:
A long-term field experiment was carried out in the experiment farm of the Sao Paulo State University, Brazil, to evaluate the phytoavailability of Zn, Cd and Pb in a Typic Eutrorthox soil treated with sewage sludge for nine consecutive years, using the sequential extraction and organic matter fractionation methods. During 2005-2006, maize (Zea mays L.) was used as test plants and the experimental design was in randomized complete blocks with four treatments and five replicates. The treatments consisted of four sewage sludge rates (in a dry basis): 0.0 (control, with mineral fertilization), 45.0, 90.0 and 127.5 t ha(-1), annually for nine years. Before maize sowing, the sewage sludge was manually applied to the soil and incorporated at 10 cm depth. Soil samples (0-20 cm layer) for Zn, Cd and Pb analysis were collected 60 days after sowing. The successive applications of sewage sludge to the soil did not affect heavy metal (Cd and Pb) fractions in the soil, with exception of Zn fractions. The Zn, Cd and Pb distributions in the soil were strongly associated with humin and residual fractions, which are characterized by stable chemical bonds. Zinc, Cd and Pb in the soil showed low phytoavailability after nine-year successive applications of sewage sludge to the soil.
Resumo:
Along-term experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the concentration of Ba in soil and in maize plants grown in a soil treated with sewage sludge for nine consecutive years. During 2005/2006, maize was used as test plants and the experimental design was in randomized complete blocks with four treatments and five replicates. Treatments consisted of: 0.0, 45.0, 90.0 and 127.5 t ha(-1) sewage sludge (dry basis). Sewage sludge application increased soil Ba concentration. Barium accumulated in the parts of maize plants were generally affected by the successive applications of sewage sludge to the soil. However, the concentration of Ba in maize grain did not exceed the critical levels of Ba for human consumption. Sewage sludge applied to soil for a long time did not affect dry matter and grain production, nevertheless had the similar effect of mineral fertilization. Published by Elsevier B.V.
Resumo:
There are about 7500 water treatment plants in Brazil. The wastes these plants generate in their decantation tanks and filters are discharged directly into the same brooks and rivers that supply water for treatment. Another serious environmental problem is the unregulated disposal of construction and demolition rubble, which increases the expenditure of public resources by degrading the urban environment and contributing to aggravate flooding and the proliferation of vectors harmful to public health. In this study, an evaluation was made of the possibility of recycling water treatment sludge in construction and demolition waste recycling plants. The axial compressive strength and water absorption of concretes and mortars produced with the exclusive and joint addition of these two types of waste was also determined. The ecoefficiency of this recycling was evaluated by determining the concentration of aluminum in the leached extract resulting from the solubilization of the recycled products. The production of concretes and mortars with the joint addition of water treatment sludge and recycled concrete rubble aggregates proved to be a viable recycling alternative from the standpoint of axial compression strength, modulus of elasticity, water absorption and tensile strength by the Brazilian test method. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In developing countries such as Brazil, the wastes generated in the decanters and filters of water treatment plants are discharged directly into the same rivers and streams that supply water for treatment. Another environmental problem is the unregulated discard of wood wastes. The lumber and wood products industry generates large quantities of this waste, from logging to the manufacture of the end product. Brazil has few biomass plants and therefore only a minor part of these wastes are reused. This paper presents the results of the first study involving a novel scientific and technological approach to evaluate the possibility of combining these two types of wastes in the production of a light-weight composite for concrete. The concrete produced with cement:sand:composite:water mass ratios of 1:2.5:0.67:0.6 displayed an axial compressive strength of 11.1 MPa, a compressive and diametral tensile strength of 1.2 MPa, water absorption of 8.8%, and a specific mass of 1.847 kg/m(3). The mechanical properties obtained with this concrete render it suitable for application in non-structural elements. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The main objective of this study was to evaluate the potential application of a lightweight concrete produced with lightweight coarse aggregate made of the water treatment sludge and sawdust (lightweight composite), by determining the thermal properties and possible environmental impact of future residue of this concrete. Two types of concrete were prepared: concrete produced with the lightweight composite dosed with cement/sand/composite/water in a mass ratio of 1:2.5:0.67:0.6 and conventional concrete dosed with cement/sand/crushed stone/water in a mass ratio of 1:4.8:5.8:0.8. The thermal properties were determined by the hot wire parallel technique. The possible environmental impact was measured using the procedures and guidelines of the Brazilian Association of Technical Standards - ABNT. The concrete produced with the lightweight composite presented a 23% lower thermal conductivity than the conventional concrete. The concrete produced with the lightweight composite presented a set of thermal properties suitable for the application of this concrete in non-structural sealing elements. The concentration of aluminum in the solubilized extract of the concrete produced with the lightweight composite was much lower than the concentration of aluminum in the water treatment sludge, confirming the possible reduction of environmental impact of this composite for use in concrete. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluates the stability of hydrogen and organic acids production in an anaerobic fluidized-bed reactor (AFBR) that contains expanded clay (2.8-3.35 mm in diameter) as a support medium and is operated on a long-term basis. The reactor was inoculated with thermally pre-treated anaerobic sludge and operated with decreasing hydraulic retention time (HRT), from 8 h to 1 h, at a controlled temperature of 30 degrees C and a pH of about 3.8. Glucose (2000 mg L(-1)) was used as the substrate, generating conversion rates of 92-98%. Decreasing the HRT from 8 h to 1 h led to an increase in average hydrogen-production rates, with a maximum value of 1.28 L h(-1) L(-1) for an HRT of 1 h. In general, hydrogen yield production increased as HRT decreased, reaching 2.29 mol of H(2)/mol glucose at an HRT of 2 h and yielding a maximum hydrogen content of 37% in the biogas. No methane was detected in the biogas throughout the period of operation. The main soluble metabolites (SMP) were acetic acid (46.94-53.84% of SMP) and butyric acid (34.51-42.16% of SMP), with less than 15.49% ethanol. The steady performance of the AFBR may be attributed to adequate thermal treatment of the inoculum, the selection of a suitable support medium for microbial adhesion, and the choice of satisfactory environmental conditions imposed on the system. The results show that stable hydrogen production and organic acids production were maintained in the AFBR over a period of 178 days. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Nowadays there are several ways of supplying hot water for showers in residential buildings. One of them is the use of electric storage water heaters (boilers). This equipment raises the water temperature in a reservoir (tank) using the heat generated by an electric resistance. The behavior of this equipment in Brazil is still a research object and there is not a standard in the country to regulate its efficiency. In this context, an experimental program was conducted aiming to collect power consumption data to evaluate its performance. The boilers underwent an operation cycle to simulate a usage condition aiming to collect parameters for calculating the efficiency. This 1-day cycle was composed of the following phases: hot water withdrawal, reheating and standby heat loss. The methods allowed the identification of different parameters concerning the boilers work, such as: standby heat loss in 24 h, hot water withdrawal rate, reheating time and energy efficiency. The average energy efficiency obtained was of 75%. The lowest efficiency was of 62% for boiler 2 and the highest was of 85% for boiler 9. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The present study approaches the economic and technical evaluation of equivalent carbon dioxide (CO(2) eqv.) capture and storage processes, considered in a proposal case compared to a base case. The base case considers an offshore petroleum production facility, with high CO(2) content (4 vol%) in the composition of the produced gas and both CO(2) and natural gas emissions to the atmosphere, called CO(2) eqv. emissions. The results obtained with this study, by using a Hysys process simulator, showed a CO(2) emission reduction of 65% comparing the proposal case in relation to the base case.
Resumo:
Minimal pasteurization of orange juice (OJ) consists of using minimum holding time and temperature to ensure partial inactivation of pectin methylesterase (PME). This process produces juice with preserved sensory attributes and has a better acceptance by consumers when compared with commercially pasteurized OJ. Sensory profile and physical-chemical characteristics of minimally processed OJ was determined, during refrigerated storage, for two OJ blends with different pH values and the same level of PME thermal inactivation. A selected and trained sensorial panel (n = 16) performed sensory analysis, based on a quantitative descriptive analysis, twice a week for 30 days, evaluating the attributes of appearance (suspended particles and color intensity), odor (natural orange and fermented orange) and flavor (orange characteristic, fermented orange, acid and bitter taste). Storage presented great effect on OJ sensory profile; however, it was not noticeable on physical-chemical characteristics.
Resumo:
A new concept and a preliminary study for a monocolumn floating unit are introduced, aimed at exploring and producing oil in ultradeep waters. This platform, which combines two relevant features-great oil storage capacity and dry tree production capability-comprises two bodies with relatively independent heave motions between them. A parametric model is used to define the main design characteristics of the floating units. A set of design alternatives is generated using this procedure. These solutions are evaluated in terms of stability requirements and dynamic response. A mathematical model is developed to estimate the first order heave and pitch motions of the platform. Experimental tests are carried out in order to calibrate this model. The response of each body alone is estimated numerically using the WAMIT (R) code. This paper also includes a preliminary study on the platform mooring system and appendages. The study of the heave plates presents the gain, in terms of decreasing the motions, achieved by the introduction of the appropriate appendages to the platform. [DOI: 10.1115/1.4001429]