996 resultados para sludge production
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
This study evaluates the stability of hydrogen and organic acids production in an anaerobic fluidized-bed reactor (AFBR) that contains expanded clay (2.8-3.35 mm in diameter) as a support medium and is operated on a long-term basis. The reactor was inoculated with thermally pre-treated anaerobic sludge and operated with decreasing hydraulic retention time (HRT), from 8 h to 1 h, at a controlled temperature of 30 degrees C and a pH of about 3.8. Glucose (2000 mg L(-1)) was used as the substrate, generating conversion rates of 92-98%. Decreasing the HRT from 8 h to 1 h led to an increase in average hydrogen-production rates, with a maximum value of 1.28 L h(-1) L(-1) for an HRT of 1 h. In general, hydrogen yield production increased as HRT decreased, reaching 2.29 mol of H(2)/mol glucose at an HRT of 2 h and yielding a maximum hydrogen content of 37% in the biogas. No methane was detected in the biogas throughout the period of operation. The main soluble metabolites (SMP) were acetic acid (46.94-53.84% of SMP) and butyric acid (34.51-42.16% of SMP), with less than 15.49% ethanol. The steady performance of the AFBR may be attributed to adequate thermal treatment of the inoculum, the selection of a suitable support medium for microbial adhesion, and the choice of satisfactory environmental conditions imposed on the system. The results show that stable hydrogen production and organic acids production were maintained in the AFBR over a period of 178 days. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Dairy sludge generated at Glanbia Ingredients Ltd., Kilkenny has up until now been landspread. This study investigated the feasibility of using earthworms to vermicompost the sludge as an alternative method of treatment. It was found that high levels of ammonia in the sludge led to earthworm fatality but that by manually aerating the sludge the ammonia could be volatilised or by adding zeolite the ammonia could be absorbed, thus solving the problem. In a medium scale trial, the earthworm species Dendrobaena veneta and Eisenia fetida dominated the polyculture. Earthworms grew and generated cocoons during vermicomposting. During vermicomposting no leachate was generated. Nutrient changes took place during vermicomposting. There were high levels of nitrate, increased calcium and sulphate in the vermicomposted dairy sludge. The amount of magnesium, potassium and chloride did not change, while phosphate was undetectable after vermicomposting. The levels of nitrate and phosphate were good indicators of the extent of vermicomposting. The vermicomposted dairy sludge provided improved growth and yields of radishes and barley compared to the dairy sludge and control. Compared to the vermicompost, the dairy sludge provided heavier ryegrass yields and more marigolds with larger flower diameters. Generally, it is the amount of phosphate in dairy sludge that dictates how much can be applied as a fertiliser on land. Vermicomposting reduced the amount of phosphate to an undetectable level but on the other hand created a problem of high nitrate levels. In a pot trial with grass grown in vermicompost the nitrate leached from the vermicompost. In field conditions the leaching of nitrate might occur and could cause an increased risk of contamination of groundwater and watercourses.
Resumo:
Hydrothermal carbonization (HTC) is a thermochemical process used in the production of charred matter similar in composition to coal. It involves the use of wet, carbohydrate feedstock, a relatively low temperature environment (180 °C-350 °C) and high autogenous pressure (up to 2,4 MPa) in a closed system. Various applications of the solid char product exist, opening the way for a range of biomass feedstock materials to be exploited that have so far proven to be troublesome due to high water content or other factors. Sludge materials are investigated as candidates for industrial-scale HTC treatment in fuel production. In general, HTC treatment of pulp and paper industry sludge (PPS) and anaerobically digested municipal sewage sludge (ADS) using existing technology is competitive with traditional treatment options, which range in price from EUR 30-80 per ton of wet sludge. PPS and ADS can be treated by HTC for less than EUR 13 and 33, respectively. Opportunities and challenges related to HTC exist, as this relatively new technology moves from laboratory and pilot-scale production to an industrial scale. Feedstock materials, end-products, process conditions and local markets ultimately determine the feasibility of a given HTC operation. However, there is potential for sludge materials to be converted to sustainable bio-coal fuel in a Finnish context.
Resumo:
The Corymbia citriodora is one of the most important forest species in Brazil and the reason is the diversity of its use, because it produces good quality wood and the leaves may be used for essential oil production. Although, there are not many studies about species and the handling effect in the nutritional balance. This study aimed to evaluate the biomass production and nutrient balance in the conventional production of essential oil and wood of Corymbia citriodora with sewage sludge application. The experiment design established was the randomized blocks, with four replicates and two treatments: 1 - fertilization with 10 tons ha(-1) (dry mass) of sewage sludge, supplemented with K and B, and 2 - mineral fertilization. It was evaluated the aerial biomass production, the nutrient export of the leaves, the essential oil and wood production at four years old. The trees that received application of sewage sludge produced 20 % more leaves biomass than the trees with mineral fertilization, resulting in larger oil production. Besides, the trees with sewage sludge application produced 14.2 tons ha(-1) yr(-1) of woody biomass that was 27 % higher than the treatment with mineral fertilization. For both treatments the N balance was negative, but treatment with sewage sludge application (-45 kg ha(-1)) was four times lower than the observed on mineral fertilization treatment (-185 kg ha(-1)). It may be concluded in this paper that the application of sewage sludge benefits the production of leaves biomass, essential oil and wood, besides result better nutritional balance of the Corymbia citriodora production system.
Resumo:
In this study wastewater treatment plant (WWTP) sludge was subjected to a reactive pyrolysis treatment to produce a high quality pyro-oil. Sludge was treated in supercritical conditions in the presence of methanol using hexane as cosolvent in a high pressure lab-autoclave. The variables affecting the pyro-oil yield and the product quality, such as mass ratio of alcohol to sludge, presence of cosolvent and temperature, were investigated. It was found that the use of a non-polar cosolvent (hexane) presents advantages in the production of high quality pyro-oil from sludge: increase of the non-polar pyro-oil yield and a considerable reduction of the amount of methanol needed to carry out the transesterification of fatty acids present in the sludge.
Resumo:
Increasing evidence is emerging that the performance of enhanced biological phosphorus removal (EBPR) systems relies on not only the total amount but also the composition of volatile fatty acids (VFAs). Domestic wastewater often contains limited amounts of VFAs with acetic acid typically being the dominating species. Consequently, prefermenters are often employed to generate additional VFAs to meet the demand for carbon by EBPR and/or denitrification processes. Limited knowledge is currently available on the effects of operational conditions on the production rate and composition of VFAs in prefermenters. In this study, a series of controlled batch experiments were conducted with sludge from a full-scale prefermenter to determine the impact of solids concentration, pH and addition of molasses on prefermentation processes. It was found that an increase in solids concentration enhanced total VFA production with an increased propionic acid fraction. The optimal pH for prefermentation was in the range of 6-7 with significant productivity loss when pH was below 5.5. Molasses addition significantly increased the production of VFAs particularly the propionic acid. However, the fermentation rate was likely limited by the biological activity of the sludge rather than by the amount of molasses added.
Resumo:
This work evaluates the environmental performance of using pulp and paper sludge as feedstock for the production of second generation ethanol. An ethanol plant for converting 5400 tons of dry sludge/year was modelled and evaluated using a cradle-to-gate life cycle assessment approach. The sludge is a burden for pulp and paper mills that is mainly disposed in landfilling. The studied system allows for the valorisation of the waste, which due to its high polysaccharide content is a valuable feedstock for bioethanol production. Eleven impact categories were analysed and the results showed that enzymatic hydrolysis and neutralisation of the CaCO3 are the environmental hotspots of the system contributing up to 85% to the overall impacts. Two optimisation scenarios were evaluated: (1) using a reduced HCl amount in the neutralisation stage and (2) co-fermentation of xylose and glucose, for maximal ethanol yield. Both scenarios displayed significant environmental impact improvements.
Resumo:
Along-term experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the concentration of Ba in soil and in maize plants grown in a soil treated with sewage sludge for nine consecutive years. During 2005/2006, maize was used as test plants and the experimental design was in randomized complete blocks with four treatments and five replicates. Treatments consisted of: 0.0, 45.0, 90.0 and 127.5 t ha(-1) sewage sludge (dry basis). Sewage sludge application increased soil Ba concentration. Barium accumulated in the parts of maize plants were generally affected by the successive applications of sewage sludge to the soil. However, the concentration of Ba in maize grain did not exceed the critical levels of Ba for human consumption. Sewage sludge applied to soil for a long time did not affect dry matter and grain production, nevertheless had the similar effect of mineral fertilization. Published by Elsevier B.V.
Resumo:
There are about 7500 water treatment plants in Brazil. The wastes these plants generate in their decantation tanks and filters are discharged directly into the same brooks and rivers that supply water for treatment. Another serious environmental problem is the unregulated disposal of construction and demolition rubble, which increases the expenditure of public resources by degrading the urban environment and contributing to aggravate flooding and the proliferation of vectors harmful to public health. In this study, an evaluation was made of the possibility of recycling water treatment sludge in construction and demolition waste recycling plants. The axial compressive strength and water absorption of concretes and mortars produced with the exclusive and joint addition of these two types of waste was also determined. The ecoefficiency of this recycling was evaluated by determining the concentration of aluminum in the leached extract resulting from the solubilization of the recycled products. The production of concretes and mortars with the joint addition of water treatment sludge and recycled concrete rubble aggregates proved to be a viable recycling alternative from the standpoint of axial compression strength, modulus of elasticity, water absorption and tensile strength by the Brazilian test method. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In developing countries such as Brazil, the wastes generated in the decanters and filters of water treatment plants are discharged directly into the same rivers and streams that supply water for treatment. Another environmental problem is the unregulated discard of wood wastes. The lumber and wood products industry generates large quantities of this waste, from logging to the manufacture of the end product. Brazil has few biomass plants and therefore only a minor part of these wastes are reused. This paper presents the results of the first study involving a novel scientific and technological approach to evaluate the possibility of combining these two types of wastes in the production of a light-weight composite for concrete. The concrete produced with cement:sand:composite:water mass ratios of 1:2.5:0.67:0.6 displayed an axial compressive strength of 11.1 MPa, a compressive and diametral tensile strength of 1.2 MPa, water absorption of 8.8%, and a specific mass of 1.847 kg/m(3). The mechanical properties obtained with this concrete render it suitable for application in non-structural elements. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30 degrees C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8 h. The reactor R1 operating with a HRT of 2 h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2) mol(-1) glucose with 1.3 mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The production of hydrogen from soft-drink wastewater in two upflow anaerobic packed-bed reactors was evaluated. The results show that soft-drink wastewater is a good source for hydrogen generation. Data from both reactors indicate that the reactor without medium containing macro- and micronutrients (R2) provided a higher hydrogen yield (3.5 mol H(2) mol(-1) of sucrose) as compared to the reactor (R1) with a nutrient-containing medium (3.3 mol H(2) mol(-1) of sucrose). Reactor R2 continuously produced hydrogen, whereas reactor R1 exhibited a short period of production and produced lower amounts of hydrogen. Better hydrogen production rates and percentages of biogas were also observed for reactor R2, which produced 0.4 L h(-1) L(-1) and 15.8% of H(2), compared to reactor R1, which produced 0.2 L h(-1) L(-1) and 2.6% of H(2). The difference in performance between the reactors was likely due to changes in the metabolic pathway for hydrogen production and decreases in bed porosity as a result of excessive biomass growth in reactor R1. Molecular biological analyses of samples from reactors R1 and R2 indicated the presence of several microorganisms, including Clostridium (91% similarity), Enterobacter (93% similarity) and Klebsiella (97% similarity). Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Heat pre-treatment of the inoculum associated to the pH control was applied to select hydrogen-producing bacteria and endospores-forming bacteria. The source of inoculum to the heat pre-treatment was from a UASB reactor used in the slaughterhouse waste treatment. The molecular biology analyses indicated that the microbial consortium presented microorganisms affiliated with Enterobacter cloacae (97% and 98%), Clostridium sp. (98%) and Clostridium acetobutyricum (96%), recognized as H, and volatile acids` producers. The following assays were carried out in batch reactors in order to verify the efficiencies of sucrose conversion to H-2 by the microbial consortium: (1) 630.0 mg sucrose/L, (2) 1184.0 mg sucrose/L, (3) 1816.0 mg sucrose/L and (4) 4128.0 mg sucrose/L. The subsequent yields were obtained as follows: 15% (1.2 mol H-2/mol sucrose), 20% (1.6 mol H-2/mol sucrose), 15% (1.2 mol H-2/mol sucrose) and 4% (0.3 mol H-2/mol sucrose), respectively. The intermediary products were acetic acid, butyric acid, methanol and ethanol in all of the anaerobic reactors. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study investigates the feasibility of an anaerobic bioreactor for treating low contents of organic matter to generate organic acids and hydrogen. The device employed for this purpose was a horizontal packed-bed bioreactor fed with glucose-based synthetic wastewater and operated with hydraulic retention times from 0.5 to 2 h. A microbial biofilm was developed without previous inoculation, using expanded clay beads (4.8-6.3 mm) as support material. Alkalinity was found to be the main parameter affecting the production of hydrogen and organic acids, and the system produced optimal output when operating without a buffer agent. The average hydrogen production was 2.48, 2.15 and 1.81 molH(2) mol(-1) of glucose for NaHCO3 influent concentrations of 0, 1000 and 2000 mg L-1, respectively. The operational regime of the bioreactor, the support material and the controlled alkalinity were effective in selecting and immobilizing microbial fermenting biofilms, which successfully produced hydrogen and organic acids throughout the operating period. Exploratory assays indicated the feasibility of organic acid extraction using an anionic polymeric resin. (C) 2007 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.