825 resultados para sistema baseado em regras fuzzy
Resumo:
Operating industrial processes is becoming more complex each day, and one of the factors that contribute to this growth in complexity is the integration of new technologies and smart solutions employed in the industry, such as the decision support systems. In this regard, this dissertation aims to develop a decision support system based on an computational tool called expert system. The main goal is to turn operation more reliable and secure while maximizing the amount of relevant information to each situation by using an expert system based on rules designed for a particular area of expertise. For the modeling of such rules has been proposed a high-level environment, which allows the creation and manipulation of rules in an easier way through visual programming. Despite its wide range of possible applications, this dissertation focuses only in the context of real-time filtering of alarms during the operation, properly validated in a case study based on a real scenario occurred in an industrial plant of an oil and gas refinery
Resumo:
In this work, we propose a two-stage algorithm for real-time fault detection and identification of industrial plants. Our proposal is based on the analysis of selected features using recursive density estimation and a new evolving classifier algorithm. More specifically, the proposed approach for the detection stage is based on the concept of density in the data space, which is not the same as probability density function, but is a very useful measure for abnormality/outliers detection. This density can be expressed by a Cauchy function and can be calculated recursively, which makes it memory and computational power efficient and, therefore, suitable for on-line applications. The identification/diagnosis stage is based on a self-developing (evolving) fuzzy rule-based classifier system proposed in this work, called AutoClass. An important property of AutoClass is that it can start learning from scratch". Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for AutoClass (the number may grow, with new class labels being added by the on-line learning process), in a fully unsupervised manner. In the event that an initial rule base exists, AutoClass can evolve/develop it further based on the newly arrived faulty state data. In order to validate our proposal, we present experimental results from a level control didactic process, where control and error signals are used as features for the fault detection and identification systems, but the approach is generic and the number of features can be significant due to the computationally lean methodology, since covariance or more complex calculations, as well as storage of old data, are not required. The obtained results are significantly better than the traditional approaches used for comparison
Resumo:
Este trabalho visa propor uma solução contendo um sistema de reconhecimento de fala automático em nuvem. Dessa forma, não há necessidade de um reconhecedor sendo executado na própria máquina cliente, pois o mesmo estará disponível através da Internet. Além do reconhecimento automático de voz em nuvem, outra vertente deste trabalho é alta disponibilidade. A importância desse tópico se d´a porque o ambiente servidor onde se planeja executar o reconhecimento em nuvem não pode ficar indisponível ao usuário. Dos vários aspectos que requerem robustez, tal como a própria conexão de Internet, o escopo desse trabalho foi definido como os softwares livres que permitem a empresas aumentarem a disponibilidade de seus serviços. Dentre os resultados alcançados e para as condições simuladas, mostrou-se que o reconhecedor de voz em nuvem desenvolvido pelo grupo atingiu um desempenho próximo ao do Google.
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
This paper presents the application of fuzzy theory to support the decision of implementing energy efficiency program in sawmills operating in the processing of Pinustaeda and Pinuselliotii. The justification of using a system based on fuzzy theory for analysis of consumption and the specific factors involved, such is the diversity of rates / factors. With the fuzzy theory, we can build a reliable system for verifying actual energy efficiency. The indices and factors characteristic of industrial activity were measured and used as the basis for the fuzzy system. We developed a management system and technology. The system involves the management practices in energy efficiency, maintenance of plant and equipment and the presence of qualified staff. The technological system involves the power factor, load factor, the factor of demand and the specific consumption. The first response provides the possibility of increased energy efficiency and the second level of energy efficiency in the industry studied. With this tool, programs can be developed for energy conservation and energy efficiency in the industrial timber with wide application in this area that is as diverse as production processes. The same systems developed can be used in other industrial activities, provided they are used indices and characteristic features of the sectors involved.
Resumo:
Building installations of cold water are key parts in any model of housing, are homes or condos. However, these systems are subject to failure, which can range from a leak in a device until faults in the structure of water reservoirs and distribution system. These faults are responsible for great economic and environmental costs. In order to reduce these losses, this work proposes the development of a system able to detect the presence and identify some types of water leaks that may occur. For implementation and testing, consumption model was used in a simulator capable of reproducing a similar behavior to a real model and its consequent failures. The detection of leaks is done based on an expert like model having two detection modules, one active and one passive, which use an array of sensors and actuators (valves) to do the sensing. For testing and implementation has been developed a software capable of coupling the system simulator and detector. From the results it can be seen that the system proposed in this work, as well as functioning satisfactorily, can be easily implemented in microcontrollers or embedded systems due to its simplicity.
Resumo:
O crescimento dos mercados internacionais de capitais e a redução das barreiras no mundo dos negócios fazem com que o movimento pela harmonização das práticas de contabilidade entre as nações seja irreversível. Atualmente, mais de 100 países já aplicam normas harmonizadas com as International Financial Reporting Standards (IFRS), seja nas demonstrações individuais das companhias, seja nas demonstrações consolidadas. O Brasil também está trilhando o caminho da harmonização, porém esta não é uma transição simples. Existem problemas a serem enfrentados, relativos à capacitação de pessoas, às diferenças culturais e ao sistema jurídico (no Brasil vigora o direito romano, enquanto nos países de origem anglo-saxã vigora o direito consuetudinário). A transição pressupõe ainda a substituição de um modelo baseado em normas por outro baseado em princípios, em que a essência econômica dos fatos prevalece sobre a forma jurídica e, desse modo, ganham relevância a interpretação e o julgamento praticados pelos profissionais. A literatura destaca diversos motivos para a existência de diferenças na contabilidade entre países, os quais constituem barreiras em potencial para o alcance da harmonização contábil global. Tendo-se em vista tais considerações, o objetivo neste trabalho é investigar quais as principais barreiras para a adoção das normas internacionais de contabilidade no Brasil. A investigação baseia-se na revisão de estudos recentes sobre o tema e entrevistas com profissionais da área contábil em empresas, auditorias e no meio acadêmico. Na percepção dos entrevistados, as principais barreiras a serem superadas para a adoção das IFRS no Brasil são: a) a influência da legislação fiscal; b) a transição de um sistema baseado em regras para outro baseado em princípios e, portanto, mais subjetivo e c) a qualificação da mão de obra. No que se refere a esta última, observa-se que o novo contador deverá ter um perfil mais executivo, participando ativamente das decisões da empresa, avaliando, julgando e decidindo. Deverá também mostrar-se disponível para uma aprendizagem contínua, adaptando-se a novas situações, aprimorando seus conhecimentos sobre finanças, economia e buscando compreender o negócio da companhia como um todo.
Resumo:
Este trabalho apresenta uma proposta para predição de falhas em rede de grade OBS com plano de controle GMPLS que auxilia as aplicações em ambientes de colaboração, como exemplo a E-Science. Os agentes de monitoração de tráfego, denominado DQMA-Fuzzy, verificam parâmetros relacionados à QoS e às imperfeições nos enlaces ópticos. Por apresentar uma solução mais rápida e facilmente implementável, foi desenvolvido um sistema baseado em lógica Fuzzy para dar mais robustez às decisões dos agentes. Simulações no NS-2 (Network Simulator – 2) demonstram que a proposta minimiza bloqueios na rede e balanceia o uso dos recursos da grade, garantindo níveis de serviços bem definidos, auxiliando na engenharia de tráfego e na predição de falhas.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Neste trabalho apresenta-se o modelo de um controlador baseado em Lógica Fuzzy para um sistema de energia baseado em fonte renovável solar fotovoltaica (photovoltaic - PV) multi-string em operação isolada, para o aproveitamento da máxima potência desta fonte. O sistema é composto por painéis solares, conversor CC-CC tipo elevador de tensão (boost), armazenamento por banco de baterias, inversor trifásico e carga trifásica variável. O sistema fotovoltaico foi modelado no MATLAB/Simulink de forma a representar a curva característica V-I do módulo PV, e que é baseado nos dados disponíveis em data-sheets de painéis fotovoltaicos comerciais. Outros estudos de natureza elétrica tais como o cálculo dos valores eficazes das correntes no conversor CC-CC, para avaliação das perdas, indispensáveis para o dimensionamento de componentes eletrônicos, foram realizados. O método tradicional Perturb and Observe de rastreamento do ponto de máxima potência (Maximum Power Point Tracking MPPT) de painéis foi testado e comparado com métodos que usam a Lógica Fuzzy. Devido ao seu desempenho, foi adotado o método Fuzzy que realiza o MPPT por inferência do ciclo de trabalho de um modulador por largura de pulso (Pulse Width Modulation - PWM) através da variação da potência pela variação da corrente do painel solar. O modelo Fuzzy adotado neste trabalho foi testado com sucesso. Os resultados mostraram que ele pode ser robusto e atende à aplicação proposta. Segundo alguns testes realizados, este controlador pode realizar o MPPT de um sistema PV na configuração multi-string onde alguns arranjos fotovoltaicos são usados. Inclusive, este controle pode ser facilmente adaptado para realizar o MPPT de outras fontes de energia baseados no mesmo princípio de controle, como é o caso do aerogerador.
Resumo:
Sistemas de previsão de cheias podem ser adequadamente utilizados quando o alcance é suficiente, em comparação com o tempo necessário para ações preventivas ou corretivas. Além disso, são fundamentalmente importantes a confiabilidade e a precisão das previsões. Previsões de níveis de inundação são sempre aproximações, e intervalos de confiança não são sempre aplicáveis, especialmente com graus de incerteza altos, o que produz intervalos de confiança muito grandes. Estes intervalos são problemáticos, em presença de níveis fluviais muito altos ou muito baixos. Neste estudo, previsões de níveis de cheia são efetuadas, tanto na forma numérica tradicional quanto na forma de categorias, para as quais utiliza-se um sistema especialista baseado em regras e inferências difusas. Metodologias e procedimentos computacionais para aprendizado, simulação e consulta são idealizados, e então desenvolvidos sob forma de um aplicativo (SELF – Sistema Especialista com uso de Lógica “Fuzzy”), com objetivo de pesquisa e operação. As comparações, com base nos aspectos de utilização para a previsão, de sistemas especialistas difusos e modelos empíricos lineares, revelam forte analogia, apesar das diferenças teóricas fundamentais existentes. As metodologias são aplicadas para previsão na bacia do rio Camaquã (15543 km2), para alcances entre 10 e 48 horas. Dificuldades práticas à aplicação são identificadas, resultando em soluções as quais constituem-se em avanços do conhecimento e da técnica. Previsões, tanto na forma numérica quanto categorizada são executadas com sucesso, com uso dos novos recursos. As avaliações e comparações das previsões são feitas utilizandose um novo grupo de estatísticas, derivadas das freqüências simultâneas de ocorrência de valores observados e preditos na mesma categoria, durante a simulação. Os efeitos da variação da densidade da rede são analisados, verificando-se que sistemas de previsão pluvio-hidrométrica em tempo atual são possíveis, mesmo com pequeno número de postos de aquisição de dados de chuva, para previsões sob forma de categorias difusas.
Resumo:
The petroleum production pipeline networks are inherently complex, usually decentralized systems. Strict operational constraints are applied in order to prevent serious problems like environmental disasters or production losses. This paper describes an intelligent system to support decisions in the operation of these networks, proposing a staggering for the pumps of transfer stations that compose them. The intelligent system is formed by blocks which interconnect to process the information and generate the suggestions to the operator. The main block of the system uses fuzzy logic to provide a control based on rules, which incorporate knowledge from experts. Tests performed in the simulation environment provided good results, indicating the applicability of the system in a real oil production environment. The use of the stagger proposed by the system allows a prioritization of the transfer in the network and a flow programming
Resumo:
Induction motors are one of the most important equipment of modern industry. However, in many situations, are subject to inadequate conditions as high temperatures and pressures, load variations and constant vibrations, for example. Such conditions, leaving them more susceptible to failures, either external or internal in nature, unwanted in the industrial process. In this context, predictive maintenance plays an important role, where the detection and diagnosis of faults in a timely manner enables the increase of time of the engine and the possibiity of reducing costs, caused mainly by stopping the production and corrective maintenance the motor itself. In this juncture, this work proposes the design of a system that is able to detect and diagnose faults in induction motors, from the collection of electrical line voltage and current, and also the measurement of engine speed. This information will use as input to a fuzzy inference system based on rules that find and classify a failure from the variation of thess quantities
Resumo:
Pós-graduação em Ciências Ambientais - Sorocaba