808 resultados para single-mode condition
Resumo:
We demonstrate theoretically that the negatively chirped femtosecond laser pulse can be spectrally narrowed by cross-phase modulation. The new view is well Supported by numerical simulation. The negative chirp method in fibers might be useful in all optical wavelength switching applications. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present a simple technique to determine the coupling efficiency between a laser diode and a lensed-tip based on the ABCD transformation matrix method. We have compared our analysis technique to that of previous work and have found that the presented method is reliable in predicting the coupling efficiency of lensed-tip and has the advantage of simplicity of coupling efficiency calculation even by a pocket calculator. The results can be useful for designing coupling optics. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Specklegram in multimode fiber has successfully been used as a sensor for detecting mechanical disturbance. Speckles in a multimode pure silica grapefruit fiber are observed and compared to that of a step-index multimode fiber, showing different features between them. The sensitivities to external disturbance of two kinds of fiber were measured, based on single-multiple-single mode (SMS) fiber structure. Experimental results show that the grapefruit fiber shows higher sensitivity than does the step-index multimode fiber. The transmission spectrum of the grapefruit fiber was measured as well, showing some oscillation features that are significantly different from that of a step-index multimode fiber. The experiments may provide suggestions to understand the mechanisms of light propagation in grapefruit fibers. (D 2008 Optical Society of America.
Resumo:
A novel method incorporating the shielded method and the post-processing method has been proposed to fabricate the pi-phase-shilted fibre grating. Then an Er-doped pi-phase-shifted distributed feedback fibre grating laser has been fabricated using the grating. The laser threshold is 20 mW. When pumped with 90 mW light at 980 nm, the laser gives an output of 1.1 mW. Its signal-to-noise ratio is better than 60 dB. It is demonstrated that the laser is single mode operation by means of a Fabry-Perot scanning interferometer.
Resumo:
We describe high-power planar waveguide laser which can achieve single-mode output from a multi-mode structure. The planar waveguide is constructed with incomplete self-imaging properties, by which the coupling loss of each guided mode can be discriminated. Thermal lens effects are evaluated for single-mode operation of such high-power diode-pumped solid-state lasers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A new, and very simple spectrometer based on birefringent fiber is described. A resolution of 0.02 angstrom has been achieved, and the system has been used to measure diode laser chirp. A length of 10km of fiber would be sufficient to resolve single mode line widths.
Resumo:
This paper will report studies of the placement of 2D photonic gratings on either side of the ridge in a Fabry Perot laser device in order to cause single mode emission. Using this approach, side mode suppression ratios of up to 30 dB are achieved, the emission remaining single mode even under 10 Gb/s large signal modulation. It is found that the use of the grating not only causes spectrally dependent reflection but in addition can lead to transverse mode fluctuations. The action of the grating has been studied not just in terms of its edge emission where conversion of the transverse modes is achieved, but also through measurement of the vertical emission from the structure where strong filtering action is observed.
Resumo:
Nonlinear analysis of thermoacoustic instability is essential for prediction of frequencies and amplitudes of limit cycles. In frequency domain analyses, a quasi-linear transfer function between acoustic velocity and heat release rate perturbations, called the flame describing function (FDF), is obtained from a flame model or experiments. The FDF is a function of the frequency and amplitude of velocity perturbations but only contains the heat release response at the forcing frequency. While the gain and phase of the FDF provide insight into the nonlinear dynamics of the system, the accuracy of its predictions remains to be verified for different types of nonlinearity. In time domain analyses, the governing equations of the fully coupled problem are solved to find the time evolution of the system. One method is to discretize the governing equations using a suitable basis, such as the natural acoustic modes of the system. The number of modes used in the discretization alters the accuracy of the solution. In our previous work we have shown that predictions using the FDF are almost exactly the same as those obtained from the time-domain using only one mode for the discretization. We call this the single-mode method. In this paper we compare results from the single-mode and multi-mode methods, applied to a thermoacoustic system of a premixed flame in a tube. For some cases, the results differ greatly in both amplitude as well as frequency content. This study shows that the contribution from higher and subharmonics to the nonlinear dynamics can be significant and must be considered for an accurate and comprehensive analysis of thermoacoustic systems. Hence multi-mode simulations are necessary, and the single-mode method or the FDF may be insufficient to capture some of the complex nonlinear behaviour in fhermoacoustics.
Resumo:
An injection locked QD laser is demonstrated to provide single longitudinal mode operation with a 40dB SMSR and an improvement in RIN peak from 1.3-2.3GHz. Alpha factor is measured to be 0.8. © 2005 Optical Society of America.
Resumo:
An injection locked QD laser is demonstrated to provide single longitudinal mode operation with a 40dB SMSR and an improvement in RIN peak from 1.3-2.3GHz. Alpha factor is measured to be 0.8. © 2005 Optical Society of America.