953 resultados para single crystals
Resumo:
Raman spectra of single crystals of adipic and sebacic acids have been photographed for the first time using λ 2537 excitation. The spectra have been divided into four regions: (a) internal frequencies; (b) summations and overtones; (c) external vibrations; and (d) low-frequency hydrogen bond oscillations. Tentative correlations have been given for all the internal frequencies and summations and overtones. A series of diffuse weak bands observed in the spectra of both these acids in the not, vert, similar2400–2800 cm−1 have been explained as a superposition of O---H frequencies lowered due to hydrogen bond formation over the summations and overtones of fundamentals mainly in the not, vert, similar1000–1500 cm−1 region. Rotatory type of external oscillations of the two formula units of these molecules in their unit cells have been identified at 76, 99, 118 and 165 cm−1 in adipic acid and 66, 95, 117 and 177 cm−1 in the spectrum of sebacic acid. A brief discussion of the low frequency hydrogen bond vibrations in these acids has been made. Making use of the Lippincott—Schroeder potential and assuming a highly anharmonic potential curve for the hydrogen bond, the vibrational frequencies of the bond have been theoretically evaluated. There is very good agreement between these and the experimental values. The results for adipic acid in cm−1 are: 304 (0 → 1), 270 (1 → 2), 241 (2 → 3), 222 (3 → 4) 201 (4 → 5), 183 (5 → 6). In the case of sebacic acid some of the intermediate and higher transitions are absent in the spectrum recorded by the author. From the above data for adipic acid the dissociation energy of the hydrogen bond was evaluated as 5·9 kcal/mole in fair agreement with the values derived from conventional methods.
Resumo:
Atomically resolved scanning tunneling microscopy was conducted on cleaved single crystals of the cubic perovskite Pr0.68Pb0.32MnO3.Several different surface configurations could be resolved including a frequent square arrangement with atomic distances in excellent agreement to the bulk lattice constant of the cubic structure. We also observed stripe formation and a surface reconstruction. The latter is likely related to a polar rare earth-oxygen terminated surface. (C) 2010 American Institute of Physics.
Resumo:
Raman spectra of single crystals of β-malonic acid and β-succinic acid have been photographed using λ 2536·5 radiation. 32 Raman lines have been recorded in the case of β-malonic acid. Of these 21 lines have been recorded for the first time. The three intense lattice lines at 52, 90 and 144 cm.-1 have been attributed to rotational lattice oscillations. 29 Raman lines in the case of β-succinic acid have been recorded. The entire lattice spectrum and many internal frequencies have been recorded for the first time. The three intense lattice lines at 80, 135 and 160 cm.-1 have been assigned to the rotational oscillations of the two molecules of the succinic acid in the unit cell.
Resumo:
We report the results of our non-resonant microwave absorption (NRMA) studies on single crystals of Tl2Ba2CaCu2O8 (Tl 2212) which reflect the occurrence of intrinsic Josephson coupling in these crystals. We have studied the magnetic field induced microwave absorption at various temperatures from 4.2K to T-c (similar to 104K) using a standard CW EPR spectrometer (H-dc parallel to c). We observe the appearance of a characteristic feature in the NRMA signals similar to the ones observed earlier by us in Bi2Sr2CaCu2O8 (Bi 2212) starting a few degrees below T-c, which on cooling passes through a maximum in intensity before disappearing at a further low temperature. This behaviour is attributed to the appearance, strengthening and disappearance of Josephson response consequent to the temperature dependence of the viscosity of the Josephson medium between the CuO2 superconducting sheets.
Ultrasonic measurement of the elastic constants of sodium p-nitrophenolate dihydrate single crystals
Resumo:
Sodium p-nitrophenolate dihydrate single crystals possess excellent nonlinear optical properties such that they can be used for optical second-harmonic generation. It belongs to the orthorhombic system with the space group Ima2. Slow evaporation or slow cooling techniques can be used to grow good optical quality single crystals from supersaturated solution. All the nine elastic constants of this crystal have been measured using an ultrasonic technique. Samples for measurements have been cut along desired crystallographic axes and the pulse echo overlap technique has been used to measure longitudinal and shear ultrasonic wave velocities along appropriate symmetry directions in the crystal. The McSkimin Delta t criterion has been applied to determine the round trip travel time accurately, from which the nine elastic constants have been evaluated. Temperature variation of selected elastic constants in a limited range have also been measured and reported.
Resumo:
Static magnetization for single crystals of insulating Nd0.85Pb0.15MnO3 and marginally conducting Nd0.70Pb0.30MnO3 has been studied around the ferromagnetic to paramagnetic transition temperature T-C. Results of measurements carried out in the critical range vertical bar(T - T-C)/T-C vertical bar <= 0.1 are reported. Critical exponents beta and gamma for the thermal behaviour of magnetization and susceptibility have been obtained both by modified Arrott plots and the Kouvel-Fisher method. The exponent delta independently obtained from the critical isotherm was found to satisfy the Widom scaling relation delta = gamma/beta + 1. For both compositions the values of exponents are consistent with those expected for isotropic magnets belonging to the Heisenberg universality class with short-range exchange in three dimensions. Correspondingly, the specific heat displays only a cusp-like anomaly at the critical temperature of these crystals which is consistent with an exponent alpha < 0. The results show that the ferromagnetic ordering transition in Nd1-xPbxMnO3 in the composition range 0.15 <= x <= 0.40 is continuous. This mixed-valent manganite displays the conventional properties of a Heisenberg-like ferromagnet, irrespective of the differing transport properties and in spite of low ordering temperatures T-C = 109 and 147.2 K for x = 0.15 and 0.30, respectively.
Resumo:
We have performed a series of magnetic aging experiments on single crystals of Dy0.5Sr0.5MnO3. The results demonstrate striking memory and chaos-like effects in this insulating half-doped perovskite manganite and suggest the existence of strong magnetic relaxation mechanisms of a clustered magnetic state. The spin-glass-like state established below a temperature T-sg approximate to 34 K originates from quenched disorder arising due to the ionic-radii mismatch at the rare earth site. However, deviations from the typical behavior seen in canonical spin glass materials are observed which indicate that the glassy magnetic properties are due to cooperative and frustrated dynamics in a heterogeneous or clustered magnetic state. In particular, the microscopic spin flip time obtained from dynamical scaling near the spin glass freezing temperature is four orders of magnitude larger than microscopic times found in atomic spin glasses. The magnetic viscosity deduced from the time dependence of the zero-field-cooled magnetization exhibits a peak at a temperature T < T-sg and displays a marked dependence on waiting time in zero field.
Resumo:
Single crystals of potassium hydrogen phthalate (KAP) have been grown by slow evaporation method from aqueous solutions. Thermal analyses indicate that KAP crystals decompose into phthalic anhydride and KOH around 520 K. Electrical properties of single crystals of KAP have been studied along with the effect of X-ray irradiation of the crystals. The electrical transport appears to be associated with tunneling of protons. The irradiated crystal exhibits lower dielectric constant and higher ac conductivity.
Resumo:
We have investigated the influence of Fe excess on the electrical transport and magnetism of Fe1+yTe0.5Se0.5 (y=0.04 and 0.09) single crystals. Both compositions exhibit resistively determined superconducting transitions (T-c) with an onset temperature of about 15 K. From the width of the superconducting transition and the magnitude of the lower critical field H-c1, it is inferred that excess of Fe suppresses superconductivity. The linear and nonlinear responses of the ac susceptibility show that the superconducting state for these compositions is inhomogeneous. A possible origin of this phase separation is a magnetic coupling between Fe excess occupying interstitial sites in the chalcogen planes and those in the Fe-square lattice. The temperature derivative of the resistivity d(rho)/d(T) in the temperature range T-c < T < T-a with T-a being the temperature of a magnetic anomaly, changes from positive to negative with increasing Fe. A log 1/T divergence of the resistivity above T-c in the sample with higher amount of Fe suggests a disorder-driven electronic localization.
Resumo:
Measurements of impurity diffusion of 86Rb, 90Sr, 133Ba, and 137Cs in single crystal Bi were carried out. Diffusion samples were prepared from single crystal Bi by ion implantation. About 1012-1013 ions were implanted, resulting in surface activities approx =104 cpm. After implantation, specimens were annealed for specified times at 220-265 deg C, and tracer penetration profiles were determined by an electrolytic method. A typical penetration profile for 137Cs in Bi showed a linear relationship for log C vs x in with Fick's law for volume diffusion. Laws of grain boundary diffusion were not obeyed and the order of magnitude of the penetration distances was much less than on a grain boundary mechanism. Results were interpreted in terms of a modified Fischer analysis using a kinetic trapping term. Effective half lengths for trapping at a twin boundary were determined for each impurity.
Resumo:
Potassium titanyl phosphate (KTP) is a relatively new nonlinear optical material with excellent combination of physical properties. This paper presents the combined etching and X-ray topographic studies carried out on KTP crystals with a view to characterizing their defects. KTP crystals employed in this investigation were grown from flux. Optical microscopic study of habit faces revealed growth layers and growth hillocks on (100) and (011) faces respectively. Etching of (011) habit faces proved that growth hillocks corresponded to the emergence point of dislocation out crops on these faces. The suitability of the new etchant to reveal dislocation was confirmed by etching the matched pairs obtained by cleaving. The defects present in the crystal were also studied by X-ray topography. The defect configuration in these crystals is characteristic of crystals grown from solution. The dislocations arc predominantly linear with their origin either at the nucleation centre or inclusions. In general, grown crystals were found to have low dislocation density and often large volumes of crystals free from dislocation could be obtained.
Resumo:
Effect of constraint (stress triaxiality) on void growth near a notch tip in a FCC single crystal is investigated. Finite element simulations within the modified boundary layer framework are conducted using crystal plasticity constitutive equations and neglecting elastic anisotropy. Displacement boundary conditions based on model, elastic, two term K-T field are applied on the outer boundary of a large circular domain. A pre-nucleated void is considered ahead of a stationary notch tip. The interaction between the notch tip and the void is studied under different constraints (T-stress levels) and crystal orientations. It is found that negative T-stress retards the mechanisms of ductile fracture. However, the extent of retardation depends on the crystal orientation. Further, it is found that there exists a particular orientation which delays the ductile fracture processes and hence can potentially improve ductility. This optimal orientation depends on the constraint level. (C) 2010 Published by Elsevier B.V.
Resumo:
The variation of the linear electro-optic effect in (-)-2-(alpha-methylbenzylamino)-5-nitropyridine with the wavelength of the incident light at room temperature has been measured. The reduced half-wave voltages have been found to have the values 2.1, 2.8, and 6.0 kV at 488, 514.5, and 632.8 nm respectively and the corresponding values of the linear electro-optic coefficient have been evaluated.;The interpretation of the results in terms of the structures of the molecule and the crystal is discussed. The thermal variation of the birefringence has also been investigated and the coefficient for the temperature variation of the refractive index difference is found to have the value (d Delta n/dT)=9.3X10(-5) K-1.