944 resultados para sine fatigue (cyclic loading)
A discussion on the cyclic loading of jack-up foundations on sand using the drum centrifuge facility
Resumo:
In the field of vibration-based damage detection of concrete structures efficient damage models are needed to better understand changes in the vibration properties of cracked structures. These models should quantitatively replicate the damage mechanisms in concrete and easily be used as damage detection tools. In this paper, the flexural cracking behaviour of plain concrete prisms subject to monotonic and cyclic loading regimes under displacement control is tested experimentally and modelled numerically. Four-point bending tests on simply supported un-notched prisms are conducted, where the cracking process is monitored using a digital image correlation system. A numerical model, with a single crack at midspan, is presented where the cracked zone is modelled using the fictitious crack approach and parts outside that zone are treated in a linear-elastic manner. The model considers crack initiation, growth and closure by adopting cyclic constitutive laws. A multi-variate Newton-Raphson iterative solver is used to solve the non-linear equations to ensure equilibrium and compatibility at the interface of the cracked zone. The numerical results agree well with the experiments for both loading scenarios. The model shows good predictions of the degradation of stiffness with increasing load. It also approximates the crack-mouth-opening-displacement when compared with the experimental data of the digital image correlation system. The model is found to be computationally efficient as it runs full analysis for cyclic loading in less than 2. min, and it can therefore be used within the damage detection process. © 2013 Elsevier Ltd.
Resumo:
Objectives: This study investigated the effect of relining, water storage and cyclic loading on the ultimate flexural strength (FSU) and on the flexural strength at the proportional limit (FSPl) of a denture base acrylic resin (Lucitone 550-L).Methods: Rectangular bars of L were made (64 mm x 10 mm x 2 mm) and relined (1.3 mm) with four relining resins (Kooliner-K, Ufi Gel Hard-UGH, Tokuso Rebase Fast-TR and New Truliner-NT). In addition, specimens relined with L and intact L specimens were made (64 mm x 10 mm x 3.3 mm). A three-point flexural test was applied on the specimens (n = 10) after (1) polymerization; (2) water storage (30 days); (3) cyclic loading (10,000 cycles at 5 Hz) and (4) water storage (30 days) + cyclic loading. Data (MPa) were analyzed with three-way ANOVA and Tukey's HSD tests (alpha = 0.05). To test for a possible correlation between FSU and FSPl, a linear regression coefficient 'r' was calculated.Results: After water storage, L-UGH and L-TR demonstrated an increased FSU (41.4950.64 MPa and 49.95-57.36 MPa, respectively) (P < 0.05). Only L-TR demonstrated an increased FSPl (20.58-24.21 MPa) after water storage (P < 0.05). L-L had the highest FSU (between 78.57 and 85.09 MPa) and FSPl (between 31.30 and 34.17 MPa) (P < 0.05). The cyclic loading decreased the FSU and FSPl of all materials (P < 0.05). Regression analysis showed a strong linear correlation between the two variables (r = 0.941).Conclusions: Water storage improved the FSU of L-UGH and L-TR and the FSPl of L-TR. L-L produced the highest FSU and FSPl. The FSU and FSPl of all materials were detrimentally influenced by cyclic loading.
Resumo:
Purpose: Different surface treatments have been developed in attempts to prevent the loosening of abutment screws. The aim of the current study was to compare the effectiveness of titanium alloy screws with tungsten-doped diamond-like carbon (W-DLC) coating and uncoated screws in providing stability to zirconia (ZrO2) ceramic abutments after cyclic loading. Materials and Methods: Twenty prefabricated ZrO2 ceramic abutments on their respective external-hex implants were divided into two groups of equal size according to the type of screw used: uncoated titanium alloy screw (Ti) or titanium alloy screw with W-DLC coating (W-DLC/Ti). The removal torque value (preload) of the abutment screw was measured before and after loading. Cyclic loading between 11 and 211 N was applied at an angle of 30 degrees to the long axis of the implants at a frequency of 15 Hz. A target of 0.5 x 10(6) cycles was defined. Group means were calculated and compared using analysis of variance and the F test (alpha=.05). Results: Before cyclic loading, the preload for Ti screws was significantly higher than that for W-DLC/Ti screws (P=.021). After cyclic loading, there was no significant difference between them (P=.499). Conclusions: Under the studied conditions, it can be concluded that, after cyclic loading, both abutment screws presented a significant reduction in the mean retained preload and similar effectiveness in maintaining preload. INT J ORAL MAXILLOFAC IMPLANTS 2012;27:1061-1067
Resumo:
During knee ligament reconstruction, the tendon graft is tensioned to prevent the occurrence of excessive graft elongation during the postoperative period. Tensioning may be achieved by applying a cyclic or static load to the graft during fixation. Although this procedure is part of the surgery, there is no consensus in international literature regarding ideal tension levels to be used in this procedure. This study was conducted on 10 tendons of the human gracilis muscle and 10 tendons of semitendinosus muscle removed from five male cadavers whose mean age was 20.8 years. These tendons underwent 10 in vitro strain cycles at three levels of deformation (2.5, 3, and 4%) and the value of the deforming load used for each cycle was recorded. The statistical analysis demonstrated that in order to attain the same level of deformation during the 10 cycles there was a reduction in the value of strain applied to the graft, observed at the three levels of deformation. It was concluded that the semitendinosus tendon presents a more uniform mechanical behavior and that there is a need for new graft tensioning protocols that consider the force associated with deformation.
Resumo:
Purpose: Existing composite restorations on teeth are often remade prior to the cementation of fixed dental prostheses. The aim of this study was to evaluate the effect of static and cyclic loading on ceramic laminate veneers adhered to aged resin composite restorations.Materials and Methods: Eighty sound maxillary incisors were collected and randomly divided into four groups: group 1: control group, no restorations; group 2: two Class III restorations; group 3: two Class IV restorations; group 4: complete composite substrate. Standard composite restorations were made using a microhybrid resin composite (Anterior Shine). Restored teeth were subjected to thermocycling (6000 cycles). Window preparations were made on the labial surface of the teeth for ceramic laminate fabrication (Empress II). Teeth were conditioned using an etch-and-rinse system. Existing composite restorations representing the aged composites were silica coated (CoJet) and silanized (ESPE-Sil). Ceramic laminates were cemented using a bis-GMA-based cement (Variolink Veneer). The specimens were randomly divided into two groups and were subjected to either static (groups 1a, 2a, 3a, 4a) or cyclic loading (groups 1b, 2b, 3b, 4b). Failure type and location after loading were classified. Data were analyzed using one-way ANOVA and Tukey's test.Results: Significantly higher fracture strength was obtained in group 4 (330 +/- 81 N) compared to the controls in group 1 (179 +/- 120 N) (one-way ANOVA, p < 0.05). Group lb survived a lower mean number of cyclic loads (672,820 cycles) than teeth of groups 2b to 4b (846x10(3) to 873x10(3) cycles). Failure type evaluation after the fracture test showed predominantly adhesive failures between dentin and cement, but after cyclic loading, more cohesive fractures in the ceramic were seen.Conclusion: Ceramic laminate veneers bonded to conditioned aged composite restorations provided favorable results. Surface conditioning of existing restorations may eliminate the necessity of removing aged composite restorations.
Resumo:
This study evaluated the effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. Disc-shaped zirconia specimens (Ø: 15mm, thickness: 1.2mm) (N=32) were submitted to one of the air-particle abrasion protocols (n=8 per group): (a) 50μm Al2O3 particles, (b) 110μm Al2O3 particles coated with silica (Rocatec Plus), (c) 30μm Al2O3 particles coated with silica (CoJet Sand) for 20s at 2.8bar pressure. Control group received no air-abrasion. All specimens were initially cyclic loaded (×20,000, 50N, 1Hz) in water at 37°C and then subjected to biaxial flexural strength testing where the conditioned surface was under tension. Zirconia surfaces were characterized and roughness was measured with 3D surface profilometer. Phase transformation from tetragonal to monoclinic was determined by Raman spectroscopy. The relative amount of transformed monoclinic zirconia (FM) and transformed zone depth (TZD) were measured using XRD. The data (MPa) were analyzed using ANOVA, Tukey's tests and Weibull modulus (m) were calculated for each group (95% CI). The biaxial flexural strength (MPa) of CoJet treated group (1266.3±158A) was not significantly different than that of Rocatec Plus group (1179±216.4A,B) but was significantly higher than the other groups (Control: 942.3±74.6C; 50μm Al2O3: 915.2±185.7B,C). Weibull modulus was higher for control (m=13.79) than those of other groups (m=4.95, m=5.64, m=9.13 for group a, b and c, respectively). Surface roughness (Ra) was the highest with 50μm Al2O3 (0.261μm) than those of other groups (0.15-0.195μm). After all air-abrasion protocols, FM increased (15.02%-19.25%) compared to control group (11.12%). TZD also showed increase after air-abrasion protocols (0.83-1.07μm) compared to control group (0.59μm). Air-abrasion protocols increased the roughness and monoclinic phase but in turn abrasion with 30μm Al2O3 particles coated with silica has increased the biaxial flexural strength of the tested zirconia. © 2013 Elsevier Ltd.
Resumo:
This study evaluated the effect of different air-particle abrasion protocols on the biaxial flexural strength and structural stability of zirconia ceramics. Zirconia ceramic specimens (ISO 6872) (Lava, 3M ESPE) were obtained (N=336). The specimens (N=118, n=20 per group) were randomly assigned to one of the air-abrasion protocols: Gr1: Control (as-sintered); Gr2: 50 μm Al2O3 (2.5 bar); Gr3: 50 μm Al2O3 (3.5 bar); Gr4: 110 μm Al2O3(2.5 bar); Gr5: 110 μm Al2O3 (3.5 bar); Gr6: 30 μm SiO2 (2.5 bar) (CoJet); Gr7: 30 μm SiO2(3.5 bar); Gr8: 110 μm SiO2 (2.5 bar) (Rocatec Plus); and Gr9: 110 μm SiO2 (3.5 bar) (duration: 20 s, distance: 10 mm). While half of the specimens were tested immediately, the other half was subjected to cyclic loading in water (100,000 cycles; 50 N, 4 Hz, 37 °°C) prior to biaxial flexural strength test (ISO 6872). Phase transformation (t→m), relative amount of transformed monoclinic zirconia (FM), transformed zone depth (TZD) and surface roughness were measured. Particle type (p=0.2746), pressure (p=0.5084) and cyclic loading (p=0.1610) did not influence the flexural strength. Except for the air-abraded group with 110 μm Al2O3 at 3.5 bar, all air-abrasion protocols increased the biaxial flexural strength (MPa) (Controlnon-aged: 1030±153, Controlaged: 1138±138; Experimentalnon-aged: 1307±184-1554±124; Experimentalaged: 1308±118-1451±135) in both non-aged and aged conditions, respectively. Surface roughness (Ra) was the highest with 110 μm Al2O3(0.84 μm. FM values ranged from 0% to 27.21%, higher value for the Rocatec Plus (110 μm SiO2) and 110 μm Al2O3 groups at 3.5 bar pressure. TZD ranged between 0 and 1.43 μm, with the highest values for Rocatec Plus and 110 μm Al2O3 groups at 3.5 bar pressure. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)