970 resultados para simulations Monte Carlo
Resumo:
The flexibility of the water lattice in clathrate hydrates and guest-guest interactions has been shown in previous studies to significantly affect the values of the thermodynamic properties, such as chemical potentials and free energies. Here we describe methods for computing occupancies, chemical potentials, and free energies that account for the flexibility of water lattice and guest-guest interactions in the hydrate phase. The methods are validated for a wide variety of guest molecules, such as methane, ethane, carbon dioxide, and tetrahydrodfuran by comparing the predicted occupancy values of guest molecules with those obtained from isothermal isobaric semigrand Monte Carlo simulations. The proposed methods extend the van der Waals and Platteuw theory for clathrate hydrates, and the Langmuir constant is calculated based on the structure of the empty hydrate lattice. These methods in combination with development of advanced molecular models for water and guest molecules should lead to a more thermodynamically consistent theory for clathrate hydrates.
Resumo:
Methane and ethane are the simplest hydrocarbon molecules that can form clathrate hydrates. Previous studies have reported methods for calculating the three-phase equilibrium using Monte Carlo simulation methods in systems with a single component in the gas phase. Here we extend those methods to a binary gas mixture of methane and ethane. Methane-ethane system is an interesting one in that the pure components form sII clathrate hydrate whereas a binary mixture of the two can form the sII clathrate. The phase equilibria computed from Monte Carlo simulations show a good agreement with experimental data and are also able to predict the sI-sII structural transition in the clathrate hydrate. This is attributed to the quality of the TIP4P/Ice and TRaPPE models used in the simulations. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The permeability of the fractal porous media is simulated by Monte Carlo technique in this work. Based oil the fractal character of pore size distribution in porous media, the probability models for pore diameter and for permeability are derived. Taking the bi-dispersed fractal porous media as examples, the permeability calculations are performed by the present Monte Carlo method. The results show that the present simulations present a good agreement compared with the existing fractal analytical solution in the general interested porosity range. The proposed simulation method may have the potential in prediction of other transport properties (such as thermal conductivity, dispersion conductivity and electrical conductivity) in fractal porous media, both saturated and unsaturated.
Resumo:
Previous studies have reported that different schemes for coupling Monte Carlo (MC) neutron transport with burnup and thermal hydraulic feedbacks may potentially be numerically unstable. This issue can be resolved by application of implicit methods, such as the stochastic implicit mid-point (SIMP) methods. In order to assure numerical stability, the new methods do require additional computational effort. The instability issue however, is problem-dependent and does not necessarily occur in all cases. Therefore, blind application of the unconditionally stable coupling schemes, and thus incurring extra computational costs, may not always be necessary. In this paper, we attempt to develop an intelligent diagnostic mechanism, which will monitor numerical stability of the calculations and, if necessary, switch from simple and fast coupling scheme to more computationally expensive but unconditionally stable one. To illustrate this diagnostic mechanism, we performed a coupled burnup and TH analysis of a single BWR fuel assembly. The results indicate that the developed algorithm can be easily implemented in any MC based code for monitoring of numerical instabilities. The proposed monitoring method has negligible impact on the calculation time even for realistic 3D multi-region full core calculations. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
Massive young stellar objects (YSOs) are powerful infrared Hi line emitters. It has been suggested that these lines form in an outflow from a disc surrounding the YSO. Here, new two-dimensional Monte Carlo radiative transfer calculations are described which test this hypothesis. Infrared spectra are synthesized for a YSO disc wind model based on earlier hydrodynamical calculations. The model spectra are in qualitative agreement with the observed spectra from massive YSOs, and therefore provide support for a disc wind explanation for the Hi lines. However, there are some significant differences: the models tend to overpredict the Bra/Br? ratio of equivalent widths and produce line profiles which are slightly too broad and, in contrast to typical observations, are double-peaked. The interpretation of these differences within the context of the disc wind picture and suggestions for their resolution via modifications to the assumed disc and outflow structure are discussed. © 2005 RAS.
Resumo:
Notre progiciel PoweR vise à faciliter l'obtention ou la vérification des études empiriques de puissance pour les tests d'ajustement. En tant que tel, il peut être considéré comme un outil de calcul de recherche reproductible, car il devient très facile à reproduire (ou détecter les erreurs) des résultats de simulation déjà publiés dans la littérature. En utilisant notre progiciel, il devient facile de concevoir de nouvelles études de simulation. Les valeurs critiques et puissances de nombreuses statistiques de tests sous une grande variété de distributions alternatives sont obtenues très rapidement et avec précision en utilisant un C/C++ et R environnement. On peut même compter sur le progiciel snow de R pour le calcul parallèle, en utilisant un processeur multicœur. Les résultats peuvent être affichés en utilisant des tables latex ou des graphiques spécialisés, qui peuvent être incorporés directement dans vos publications. Ce document donne un aperçu des principaux objectifs et les principes de conception ainsi que les stratégies d'adaptation et d'extension.
Resumo:
Ordering in a binary alloy is studied by means of a molecular-dynamics (MD) algorithm which allows to reach the domain growth regime. Results are compared with Monte Carlo simulations using a realistic vacancy-atom (MC-VA) mechanism. At low temperatures fast growth with a dynamical exponent x>1/2 is found for MD and MC-VA. The study of a nonequilibrium ordering process with the two methods shows the importance of the nonhomogeneity of the excitations in the system for determining its macroscopic kinetics.
Resumo:
Using the plausible model of activated carbon proposed by Harris and co-workers and grand canonical Monte Carlo simulations, we study the applicability of standard methods for describing adsorption data on microporous carbons widely used in adsorption science. Two carbon structures are studied, one with a small distribution of micropores in the range up to 1 nm, and the other with micropores covering a wide range of porosity. For both structures, adsorption isotherms of noble gases (from Ne to Xe), carbon tetrachloride and benzene are simulated. The data obtained are considered in terms of Dubinin-Radushkevich plots. Moreover, for benzene and carbon tetrachloride the temperature invariance of the characteristic curve is also studied. We show that using simulated data some empirical relationships obtained from experiment can be successfully recovered. Next we test the applicability of Dubinin's related models including the Dubinin-Izotova, Dubinin-Radushkevich-Stoeckli, and Jaroniec-Choma equations. The results obtained demonstrate the limits and applications of the models studied in the field of carbon porosity characterization.