999 resultados para silver markets modeling
Resumo:
This paper presents the Realistic Scenarios Generator (RealScen), a tool that processes data from real electricity markets to generate realistic scenarios that enable the modeling of electricity market players’ characteristics and strategic behavior. The proposed tool provides significant advantages to the decision making process in an electricity market environment, especially when coupled with a multi-agent electricity markets simulator. The generation of realistic scenarios is performed using mechanisms for intelligent data analysis, which are based on artificial intelligence and data mining algorithms. These techniques allow the study of realistic scenarios, adapted to the existing markets, and improve the representation of market entities as software agents, enabling a detailed modeling of their profiles and strategies. This work contributes significantly to the understanding of the interactions between the entities acting in electricity markets by increasing the capability and realism of market simulations.
Resumo:
Tämän diplomityön päämääränä oli tutkia Perloksen teknologiaosaamisia. Perloksen tavoitteena on tulevaisuudessa yhdistää ja soveltaa uusia teknologioita ja älykkäitä materiaaleja muovimekaniikkaan.Ideana oli mallintaa Perloksen osaamisia ja osaamisgapeja ottaen huomioon heidän tulevaisuuden visionsa. Projektituotteena osaamisten mallintamisessa oli Perlos Healthcaren asiakkaan analysoiva mittauslaite. Tutkimuksen arvo on huomattava sillä tunnistamalla osaamisensa ja kyvykkyytensä yritys pystyy luomaan paremman tarjooman vastatessaan koko ajan kasvaviin asiakasvaatimuksiin. Tutkimus on osa TEKESin rahoittamaa LIIMA -projektia. Työn ensimmäisessä osassa esitellään osaamiseen ja partneroitumiseen liittyviä teorioita. Osaamisten mallintaminen tehtiin Excel -pohjaisella työkalulla. Se sisältää projektituotteeseen liittyen osaamisriippuvuuksien mallintamisen ja gap -analyysin. Yhtenä tutkimusmetodina käytettiin haastattelututkimusta. Työ ja sen tulokset antavat operatiivista hyötyä teknologioiden ja markkinoiden välisessä kentässä.
Resumo:
Electricity spot prices have always been a demanding data set for time series analysis, mostly because of the non-storability of electricity. This feature, making electric power unlike the other commodities, causes outstanding price spikes. Moreover, the last several years in financial world seem to show that ’spiky’ behaviour of time series is no longer an exception, but rather a regular phenomenon. The purpose of this paper is to seek patterns and relations within electricity price outliers and verify how they affect the overall statistics of the data. For the study techniques like classical Box-Jenkins approach, series DFT smoothing and GARCH models are used. The results obtained for two geographically different price series show that patterns in outliers’ occurrence are not straightforward. Additionally, there seems to be no rule that would predict the appearance of a spike from volatility, while the reverse effect is quite prominent. It is concluded that spikes cannot be predicted based only on the price series; probably some geographical and meteorological variables need to be included in modeling.
Stochastic particle models: mean reversion and burgers dynamics. An application to commodity markets
Resumo:
The aim of this study is to propose a stochastic model for commodity markets linked with the Burgers equation from fluid dynamics. We construct a stochastic particles method for commodity markets, in which particles represent market participants. A discontinuity in the model is included through an interacting kernel equal to the Heaviside function and its link with the Burgers equation is given. The Burgers equation and the connection of this model with stochastic differential equations are also studied. Further, based on the law of large numbers, we prove the convergence, for large N, of a system of stochastic differential equations describing the evolution of the prices of N traders to a deterministic partial differential equation of Burgers type. Numerical experiments highlight the success of the new proposal in modeling some commodity markets, and this is confirmed by the ability of the model to reproduce price spikes when their effects occur in a sufficiently long period of time.
Resumo:
In this work an agent based model (ABM) was proposed using the main idea from the Jabłonska-Capasso-Morale (JCM) model and maximized greediness concept. Using a multi-agents simulator, the power of the ABM was assessed by using the historical prices of silver metal dating from the 01.03.2000 to 01.03.2013. The model results, analysed in two different situations, with and without maximized greediness, have proven that the ABM is capable of explaining the silver price dynamics even in utmost events. The ABM without maximal greediness explained the prices with more irrationalities whereas the ABM with maximal greediness tracked the price movements with more rational decisions. In the comparison test, the model without maximal greediness stood as the best to capture the silver market dynamics. Therefore, the proposed ABM confirms the suggested reasons for financial crises or markets failure. It reveals that an economic or financial collapse may be stimulated by irrational and rational decisions, yet irrationalities may dominate the market.
Resumo:
Recent work suggests that the conditional variance of financial returns may exhibit sudden jumps. This paper extends a non-parametric procedure to detect discontinuities in otherwise continuous functions of a random variable developed by Delgado and Hidalgo (1996) to higher conditional moments, in particular the conditional variance. Simulation results show that the procedure provides reasonable estimates of the number and location of jumps. This procedure detects several jumps in the conditional variance of daily returns on the S&P 500 index.
Resumo:
Stock markets employ specialized traders, market-makers, designed to provide liquidity and volume to the market by constantly supplying both supply and demand. In this paper, we demonstrate a novel method for modeling the market as a dynamic system and a reinforcement learning algorithm that learns profitable market-making strategies when run on this model. The sequence of buys and sells for a particular stock, the order flow, we model as an Input-Output Hidden Markov Model fit to historical data. When combined with the dynamics of the order book, this creates a highly non-linear and difficult dynamic system. Our reinforcement learning algorithm, based on likelihood ratios, is run on this partially-observable environment. We demonstrate learning results for two separate real stocks.
Resumo:
This article examines the characteristics of key measures of volatility for different types of futures contracts to provide a better foundation for modeling volatility behavior and derivative values. Particular attention is focused on analyzing how different measures of volatility affect volatility persistence relationships. Intraday realized measures of volatility are found to be more persistent than daily measures, the type of GARCH procedure used for conditional volatility analysis is critical, and realized volatility persistence is not coherent with conditional volatility persistence. Specifically, although there is a good fit between the realized and conditional volatilities, no coherence exists between their degrees of persistence, a counterintuitive finding that shows realized and conditional volatility measures are not a substitute for one another
Resumo:
The Complex Adaptive Systems, Cognitive Agents and Distributed Energy (CASCADE) project is developing a framework based on Agent Based Modelling (ABM). The CASCADE Framework can be used both to gain policy and industry relevant insights into the smart grid concept itself and as a platform to design and test distributed ICT solutions for smart grid based business entities. ABM is used to capture the behaviors of diff erent social, economic and technical actors, which may be defi ned at various levels of abstraction. It is applied to understanding their interactions and can be adapted to include learning processes and emergent patterns. CASCADE models ‘prosumer’ agents (i.e., producers and/or consumers of energy) and ‘aggregator’ agents (e.g., traders of energy in both wholesale and retail markets) at various scales, from large generators and Energy Service Companies down to individual people and devices. The CASCADE Framework is formed of three main subdivisions that link models of electricity supply and demand, the electricity market and power fl ow. It can also model the variability of renewable energy generation caused by the weather, which is an important issue for grid balancing and the profi tability of energy suppliers. The development of CASCADE has already yielded some interesting early fi ndings, demonstrating that it is possible for a mediating agent (aggregator) to achieve stable demandfl attening across groups of domestic households fi tted with smart energy control and communication devices, where direct wholesale price signals had previously been found to produce characteristic complex system instability. In another example, it has demonstrated how large changes in supply mix can be caused even by small changes in demand profi le. Ongoing and planned refi nements to the Framework will support investigation of demand response at various scales, the integration of the power sector with transport and heat sectors, novel technology adoption and diffusion work, evolution of new smart grid business models, and complex power grid engineering and market interactions.
Resumo:
This paper characterizes the dynamics of jumps and analyzes their importance for volatility forecasting. Using high-frequency data on four prominent energy markets, we perform a model-free decomposition of realized variance into its continuous and discontinuous components. We find strong evidence of jumps in energy markets between 2007 and 2012. We then investigate the importance of jumps for volatility forecasting. To this end, we estimate and analyze the predictive ability of several Heterogenous Autoregressive (HAR) models that explicitly capture the dynamics of jumps. Conducting extensive in-sample and out-of-sample analyses, we establish that explicitly modeling jumps does not significantly improve forecast accuracy. Our results are broadly consistent across our four energy markets, forecasting horizons, and loss functions
Resumo:
A intenção deste trabalho é explorar dinâmicas de competição por meio de “simulação baseada em agentes”. Apoiando-se em um crescente número de estudos no campo da estratégia e teoria das organizações que utilizam métodos de simulação, desenvolveu-se um modelo computacional para simular situações de competição entre empresas e observar a eficiência relativa dos métodos de busca de melhoria de desempenho teorizados. O estudo também explora possíveis explicações para a persistência de desempenho superior ou inferior das empresas, associados às condições de vantagem ou desvantagem competitiva
Resumo:
This paper proposes a combined pool/bilateral short term hydrothermal scheduling model (PDC) for the context of the day-ahead energy markets. Some innovative aspects are introduced in the model, such as: i) the hydraulic generation is optimized through the opportunity cost function proposed; ii) there is no decoupling between physical and commercial dispatches, as is the case today in Brazil; iii) interrelationships between pool and bilateral markets are represented through a single optimization problem; iv) risk exposures related to future deficits are intrinsically mitigated; v) the model calculates spot prices in an hourly basis and the results show a coherent correlation between hydrological conditions and calculated prices. The proposed PDC model is solved by a primal-dual interior point method and is evaluated by simulations involving a test system. The results are focused on sensitivity analyses involving the parameters of the model, in such a way to emphasize its main modeling aspects. The results show that the proposed PDC provides a conceptual means for short term price formation for hydrothermal systems.
Resumo:
Synthesis, structural and spectroscopic characterizations, molecular modeling and antimycobacterial assays of new silver(I) complexes with two Schiff bases - MBDA and MBDB - are reported. The complexes [Ag(MBDA) 2]NO3, or AgMBDA, and [Ag(MBDB)NO3] or AgMBDB, were obtained by the reaction of the respective ligands with silver(I) nitrate in methanol. The Schiff bases were previously obtained by mixing ethylenediamine or 1,3-diaminopropane with p-anisaldehyde. The characterizations of the complexes were based on elemental (C, H and N) and thermal (TG-DTA) analyses and 13C and 1H NMR and FT-IR spectroscopic measurements, as well as X-ray structure determination for AgMBDA. Spectroscopic data predicted by DFT calculations are in agreement with the experimental data for the AgMBDA complex. The AgMBDA complex has a monomeric structure with a molar proportion 1:2 Ag/ligand, while AgMBDB presents a 1:1 proportion. The complexes AgMBDA and AgMBDB showed to be more effective against Mycobacterium tuberculosis than antibacterial agent silver sulfadiazine - SSD. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
During the last decade peach and nectarine fruit have lost considerable market share, due to increased consumer dissatisfaction with quality at retail markets. This is mainly due to harvesting of too immature fruit and high ripening heterogeneity. The main problem is that the traditional used maturity indexes are not able to objectively detect fruit maturity stage, neither the variability present in the field, leading to a difficult post-harvest management of the product and to high fruit losses. To assess more precisely the fruit ripening other techniques and devices can be used. Recently, a new non-destructive maturity index, based on the vis-NIR technology, the Index of Absorbance Difference (IAD), that correlates with fruit degreening and ethylene production, was introduced and the IAD was used to study peach and nectarine fruit ripening from the “field to the fork”. In order to choose the best techniques to improve fruit quality, a detailed description of the tree structure, of fruit distribution and ripening evolution on the tree was faced. More in details, an architectural model (PlantToon®) was used to design the tree structure and the IAD was applied to characterize the maturity stage of each fruit. Their combined use provided an objective and precise evaluation of the fruit ripening variability, related to different training systems, crop load, fruit exposure and internal temperature. Based on simple field assessment of fruit maturity (as IAD) and growth, a model for an early prediction of harvest date and yield, was developed and validated. The relationship between the non-destructive maturity IAD, and the fruit shelf-life, was also confirmed. Finally the obtained results were validated by consumer test: the fruit sorted in different maturity classes obtained a different consumer acceptance. The improved knowledge, leaded to an innovative management of peach and nectarine fruit, from “field to market”.
Resumo:
Die Entstehung eines Marktpreises für einen Vermögenswert kann als Superposition der einzelnen Aktionen der Marktteilnehmer aufgefasst werden, die damit kumulativ Angebot und Nachfrage erzeugen. Dies ist in der statistischen Physik mit der Entstehung makroskopischer Eigenschaften vergleichbar, die von mikroskopischen Wechselwirkungen zwischen den beteiligten Systemkomponenten hervorgerufen werden. Die Verteilung der Preisänderungen an Finanzmärkten unterscheidet sich deutlich von einer Gaußverteilung. Dies führt zu empirischen Besonderheiten des Preisprozesses, zu denen neben dem Skalierungsverhalten nicht-triviale Korrelationsfunktionen und zeitlich gehäufte Volatilität zählen. In der vorliegenden Arbeit liegt der Fokus auf der Analyse von Finanzmarktzeitreihen und den darin enthaltenen Korrelationen. Es wird ein neues Verfahren zur Quantifizierung von Muster-basierten komplexen Korrelationen einer Zeitreihe entwickelt. Mit dieser Methodik werden signifikante Anzeichen dafür gefunden, dass sich typische Verhaltensmuster von Finanzmarktteilnehmern auf kurzen Zeitskalen manifestieren, dass also die Reaktion auf einen gegebenen Preisverlauf nicht rein zufällig ist, sondern vielmehr ähnliche Preisverläufe auch ähnliche Reaktionen hervorrufen. Ausgehend von der Untersuchung der komplexen Korrelationen in Finanzmarktzeitreihen wird die Frage behandelt, welche Eigenschaften sich beim Wechsel von einem positiven Trend zu einem negativen Trend verändern. Eine empirische Quantifizierung mittels Reskalierung liefert das Resultat, dass unabhängig von der betrachteten Zeitskala neue Preisextrema mit einem Anstieg des Transaktionsvolumens und einer Reduktion der Zeitintervalle zwischen Transaktionen einhergehen. Diese Abhängigkeiten weisen Charakteristika auf, die man auch in anderen komplexen Systemen in der Natur und speziell in physikalischen Systemen vorfindet. Über 9 Größenordnungen in der Zeit sind diese Eigenschaften auch unabhängig vom analysierten Markt - Trends, die nur für Sekunden bestehen, zeigen die gleiche Charakteristik wie Trends auf Zeitskalen von Monaten. Dies eröffnet die Möglichkeit, mehr über Finanzmarktblasen und deren Zusammenbrüche zu lernen, da Trends auf kleinen Zeitskalen viel häufiger auftreten. Zusätzlich wird eine Monte Carlo-basierte Simulation des Finanzmarktes analysiert und erweitert, um die empirischen Eigenschaften zu reproduzieren und Einblicke in deren Ursachen zu erhalten, die zum einen in der Finanzmarktmikrostruktur und andererseits in der Risikoaversion der Handelsteilnehmer zu suchen sind. Für die rechenzeitintensiven Verfahren kann mittels Parallelisierung auf einer Graphikkartenarchitektur eine deutliche Rechenzeitreduktion erreicht werden. Um das weite Spektrum an Einsatzbereichen von Graphikkarten zu aufzuzeigen, wird auch ein Standardmodell der statistischen Physik - das Ising-Modell - auf die Graphikkarte mit signifikanten Laufzeitvorteilen portiert. Teilresultate der Arbeit sind publiziert in [PGPS07, PPS08, Pre11, PVPS09b, PVPS09a, PS09, PS10a, SBF+10, BVP10, Pre10, PS10b, PSS10, SBF+11, PB10].