948 resultados para silane grafting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research underlines the extensive application of nanostructured metal oxides in environmental systems such as hazardous waste remediation and water purification. This study tries to forge a new understanding of the complexity of adsorption and photocatalysis in the process of water treatment. Sodium niobate doped with a different amount of tantalum, was prepared via a hydrothermal reaction and was observed to be able to adsorb highly hazardous bivalent radioactive isotopes such as Sr2+ and Ra2+ions. This study facilitates the preparation of Nb-based adsorbents for efficiently removing toxic radioactive ions from contaminated water and also identifies the importance of understanding the influence of heterovalent substitution in microporous frameworks. Clay adsorbents were prepared via a two-step method to remove anionic and non-ionic herbicides from water. Firstly, layered beidellite clay was treated with acid in a hydrothermal process; secondly, common silane coupling agents, 3-chloro-propyl trimethoxysilane or triethoxy silane, were grafted onto the acid treated samples to prepare the adsorption materials. In order to isolate the effect of the clay surface, we compared the adsorption property of clay adsorbents with ƒ×-Al2O3 nanofibres grafted with the same functional groups. Thin alumina (£^-Al2O3) nanofibres were modified by the grafting of two organosilane agents 3-chloropropyltriethoxysilane and octyl triethoxysilane onto the surface, for the adsorptive removal of alachlor and imazaquin herbicides from water. The formation of organic groups during the functionalisation process established super hydrophobic sites along the surfaces and those non-polar regions of the surfaces were able to make close contact with the organic pollutants. A new structure of anatase crystals linked to clay fragments was synthesised by the reaction of TiOSO4 with laponite clay for the degradation of pesticides. Based on the Ti/clay ratio, these new catalysts showed a high degradation rate when compared with P25. Moreover, immobilized TiO2 on laponite clay fragments could be readily separated out from a slurry system after the photocatalytic reaction. Using a series of partial phase transition methods, an effective catalyst with fibril morphology was prepared for the degradation of different types of phenols and trace amount of herbicides from water. Both H-titanate and TiO2-(B) fibres coated with anatase nanocrystal were studied. When compared with a laponite clay photocatalyst, it was found that anatase dotted TiO2-(B) fibres prepared by a 45 h hydrothermal treatment followed by calcination were not only superior in performance in photocatalysis but could also be readily separated from a slurry system after photocatalytic reactions. This study has laid the foundation for the development of the ability to fabricate highly efficient nanostructured solids for the removal of radioactive ions and organic pollutants from contaminated water. These results now seem set to contribute to the development of advanced water purification devices in the future. These modified nanostructured materials with unusual properties have broadened their application range beyond their traditional use as adsorbents, to also encompass the storage of nuclear waste after concentrating from contaminated water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Between 1987 and 1999, 540 revision total hip replacements in 487 patients were performed at our institution with the femoral impaction grafting technique with a cemented femoral stem. All patients were prospectively followed for 2-15years post-operatively with no loss to follow-up. 494 hips remained successfully in situ at an average 6.7years. The ten year survival rate was 98.0% (95% CI 96.2 to 99.8) with aseptic loosening as the endpoint and 84.2% (95% CI 78.5 to 89.9) for re-operation for any reason. Indication for surgery and the use of any kind of reinforcement significantly influenced outcome (p<0.001). This is the largest known series of revision THR with femoral impaction grafting and the results support continued use of this technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: Acetabular impaction grafting has been shown to have excellent results, but concerns regarding its suitability for larger defects have been highlighted. We report the use of this technique in a large cohort of patients with the aim of better understanding the limitations of the technique. Methods: We investigated a consecutive group of 339 cases of impaction grafting of the cup with morcellised impacted allograft bone for survivorship and mechanisms for early failure. Results: Kaplan Meier survival was 89.1% (95% CI 83.2 to 95.0%) at 5.8 years for revision for any reason, and 91.6% (95% CI 85.9 to 97.3%) for revision for aseptic loosening of the cup. Of the 15 cases revised for aseptic cup loosening, nine were large rim mesh reconstructions, two were fractured Kerboull-Postel plates, two were migrating cages, one medial wall mesh failure and one impaction alone failed. Interpretation: In our series, results were disappointing where a large rim mesh or significant reconstruction was required. In light of these results, our technique has changed in that we now use predominantly larger chips of purely cancellous bone, 8-10 mm3 in size, to fill the cavity and larger diameter cups to better fill the mouth of the reconstructed acetabulum. In addition we now make greater use of i) implants made of a highly porous in-growth surface to constrain allograft chips and ii) bulk allografts combined with cages and morcellised chips in cases with very large segmental and cavitary defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Between 1995 and 2003, 129 cemented primary THRs were performed using full acetabular impaction grafting to reconstruct acetabular deficiencies. These were classified as cavitary in 74 and segmental in 55 hips. Eighty-one patients were reviewed at mean 9.1 (6.2-14.3) years post-operatively. There were seven acetabular component revisions due to aseptic loosening, and a further 11 cases that had migrated >5mm or tilted >5° on radiological review - ten of which reported no symptoms. Kaplan-Meier analysis of revisions for aseptic loosening demonstrates 100% survival at nine years for cavitary defects compared to 82.6% for segmental defects. Our results suggest that the medium-term survival of this technique is excellent when used for purely cavitary defects but less predictable when used with large rim meshes in segmental defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the impact of polystyrene sodium sulfonate (PolyNaSS) grafting onto the osseo-integration of a polyethylene terephthalate artificial ligament (Ligament Advanced Reinforcement System, LARS™) used for Anterior Cruciate Ligament (ACL). The performance of grafted and non-grafted ligaments was assessed in vitro by culturing human osteoblasts under osteogenic induction and this demonstrated that the surface modification was capable of up-regulating the secretion of ALP and induced higher level of mineralisation as measured 6 weeks post-seeding by Micro-Computed Tomography. Grafted and non-grafted LARS™ were subsequently implanted in an ovine model for ACL reconstruction and the ligament-to-bone interface was evaluated by histology and biomechanical testings 3 and 12 months post-implantation. The grafted ligaments exhibited more frequent direct ligament-to-bone contact and bone formation in the core of the ligament at the later time point than the non-grafted specimens, the grafting also significantly reduced the fibrous encapsulation of the ligament 12 months post-implantation. However, this improved osseo-integration was not translated into a significant increase in the biomechanical pull-out loads. These results provide evidences that PolyNaSS grafting improved the osseo-integration of the artificial ligament within the bone tunnels. This might positively influence the outcome of the surgical reconstructions, as higher ligament stability is believed to limit micro-movement and therefore permits earlier and enhanced healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impaction bone grafting for reconstitution of bone stock in revision hip surgery has been used for nearly 30 years. We used this technique, in combination with a cemented acetabular component, in the acetabula of 304 hips in 292 patients revised for aseptic loosening between 1995 and 2001. The only additional supports used were stainless steel meshes placed against the medial wall or laterally around the acetabular rim to contain the graft. All Paprosky grades of defect were included. Clinical and radiographic outcomes were collected in surviving patients at a minimum of 10 years following the index operation. Mean follow-up was 12.4 years (SD 1.5; range 10.0-16.0). Kaplan-Meier survivorship with revision for aseptic loosening as the endpoint was 85.9% (95% CI 81.0 to 90.8%) at 13.5 years. Clinical scores for pain relief remained satisfactory, and there was no difference in clinical scores between cups that appeared stable and those that appeared loose radiographically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined whether the use of trabecular metal wedges to fill segmental defects is an effective method of socket reconstruction when used in combination with impaction grafting and implantation of a cemented socket. Fifteen hips in 14 patients underwent impaction grafting in combination with a TM wedge with a minimum of 2 years follow-up. All patients had their defects assessed using the Paprosky classification. Patients were reviewed with x-rays and migration of the implant was measured. Outcome scores were also collected. Mean follow-up was 39 months (25-83). The mean age at surgery was 67.8 (49-85) years. Seven of the patients had previously undergone impaction grafting with the use of a stainless steel rim mesh to constrain the graft. None of the patients had failed either clinically or radiologically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Management of nanopowder and reactive plasma parameters in a low-pressure RF glow discharge in silane is studied. It is shown that the discharge control parameters and reactor volume can be adjusted to ensure lower abundance of nanopowders, which is one of the requirements of the plasma-assisted fabrication of low-dimensional quantum nanostructures. The results are relevant to micro- and nanomanufacturing technologies employing low-pressure glow discharge plasmas of silane-based gas mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal transport in graphene-polymer nanocomposite is complicated and has not been well understood. The interfacial thermal transport between graphene nanofiller and polymer matrix is expected to play a key role in controlling the overall thermal performance of graphene-polymer nanocomposite. In this work, we investigated the thermal transport across graphene-polymer interfaces functionalized with end-grafted polymer chains using molecular dynamics simulations. The effects of grafting density, chain length and initial morphology on the interfacial thermal transport were systematically investigated. It was found that end-grafted polymer chains could significantly enhance interfacial thermal transport and the underlying mechanism was considered to be the enhanced vibration coupling between graphene and polymer. In addition, a theoretical model based on effective medium theory was established to predict the thermal conductivity in graphene-polymer nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silylated kaolinites were synthesized at 80°C without the use of inert gas protection. The method presented started with mechanical grinding of kaolinite, followed by grafting with 3-aminopropyltriethoxysilane (APTES). The mechanical grinding treatment destroyed the ordered sheets of kaolinite, formed fine fragments and generated broken bonds (undercoordinated metal ions). These broken bonds served as new sites for the condensation with APTES. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of –CH2 from APTES. 29Si cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy (29Si CP/MAS NMR) showed that the principal bonding mechanism between APTES and kaolinite fitted a tridentate silylation model (T3) with a chemical shift at 66.7 ppm. The silane loadings of the silylated samples were estimated from the mass loss obtained by TG-DTG curves. The results showed that the 6-hour ground kaolinite could be grafted with the most APTES (7.0%) using cyclohexane as solvent. The loaded amount of APTES in the silylated samples obtained in different solvents decreased in the order as: nonpolar solvent > polar solvent with low dielectric constant (toluene) > polar solvent with high dielectric constant (ethanol).