949 resultados para shelf break
Resumo:
Hydrographic data collected during surveys carried out in austral winter 2003 and summer 2004 are used to analyze the distributions of temperature (T) and salinity (S) over the continental shelf and slope of eastern South America between 27 degrees S and 39 degrees S. The water mass structure and the characteristics of the transition between subantarctic and subtropical shelf water (STSW), referred to as the subtropical shelf front (STSF), as revealed by the vertical structure of temperature and salinity are discussed. During both surveys, the front intensifies downward and extends southwestward from the near coastal zone at 33 degrees S to the shelf break at 36 degrees S. In austral winter subantarctic shelf water (SASW), derived from the northern Patagonia shelf, forms a vertically coherent cold wedge of low salinity waters that locally separate the outer shelf STSW from the fresher inner shelf Plata Plume Water (PPW) derived from the Rio de la Plata. Winter T-S diagrams and cross-shelf T and S distributions indicate that mixtures of PPW and tropical water only occur beyond the northernmost extent of pure SASW, and form STSW and an inverted thermocline characteristic of this region. In summer 2004, dilution of Tropical water (TW) occurs at two distinct levels: a warm near surface layer, associated to PPW-TW mixtures, similar to but significantly warmer than winter STSW, and a colder (T similar to 16 degrees C) salinity minimum layer at 40-50 m depth, created by SASW-STSW mixtures across the STSF. In winter, the salinity distribution controls the density structure creating a cross-shore density gradient, which prevents isopycnal mixing across the STSF. Temperature stratification in summer induces a sharp pycnocline providing cross-shelf isopycnal connections across the STSF. Cooling and freshening of the upper layer observed at stations collected along the western edge of the Brazil Current suggest offshore export of shelf waters. Low T and S filaments, evident along the shelf break in the winter data, suggest that submesoscale eddies may enhance the property exchange across the shelf break. These observations suggest that as the subsurface shelf waters converge at the STSF, they flow southward along the front and are expelled offshore, primarily along the front axis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Nutrient distributions observed at some depths along the continental shelf from 27 degrees 05`S (Brazil) to 39 degrees 31`S (Argentina) in winter, 2003 and summer, 2004 related to salinity and dissolved oxygen (mL L-1) and saturation (%) data showed remarkable influences of fresh water discharge over the coastal region and in front of the La Plata estuary. In the southern portion of the study area different processes were verified. Upwelling processes caused by ocean dynamics typical of shelf break areas, eddies related to surface dynamics and regeneration processes confirmed by the increase of nutrients and the decrease of dissolved and saturation oxygen data were verified. High silicate concentrations in the surface waters were identified related to low salinities (minimum of 21.22 in winter and 21.96 in summer), confirming the importance of freshwater inputs in this region, especially in winter. Silicate concentration range showed values between 0.00 and 83.52 mu M during winter and from 0.00 to 41.16 mu M during summer. Phosphate concentrations worked as a secondary trace of terrestrial input and their values varied from 0.00 to 3.30 mu M in winter and from 0.03 to 2.26 mu M in summer; however, in shallow waters, phosphate indicated more clearly the fresh water influence. The most important information given by nitrate concentrations was the presence of water from SACW upwelling that represents a new source of nutrients for marine primary production. Nitrate maximum values reached 41.96 M in winter and 33.10 mu M in summer. At a depth similar to 800m, high nitrate, phosphate and silicate concentrations were related to Malvinas Current Waters, Subantarctic Shallow Waters and Antarctic Atlantic Intermediate Waters (AAIW). Dissolved oxygen varied from 3.41 to 7.06 mL L-1 in winter and from 2.65 to 6.85 mL L-1 in summer. The percentage of dissolved oxygen saturation in the waters showed values between 48% and 113% in winter and from 46% to 135% in summer. The most important primary production was verified in the summer, and situations of undersaturation were mainly observed below 50 m depth and at some points near the coast. The anti-correlation between nutrients and dissolved oxygen which showed evident undersaturation also revealed important potential sites of remineralization processes. The nutrient behaviours showed some aspects of the processes that occur over the Southwestern South Atlantic continental shelf and in their land-sea interfaces between Mar del Plata and Itajai.
Resumo:
The Camamu Bay (CMB) is located on the narrowest shelf along the South American coastline and close to the formation of two major Western Boundary Currents (WBC), the Brazil/North Brazil Current (BC/NBC). These WBC flow close to the shelf break/slope region and are expected to interact with the shelf currents due to the narrowness of the shelf. The shelf circulation is investigated in terms of current variability based on an original data set covering the 2002-2003 austral summer and the 2003 austral autumn. The Results show that the currents at the shelf are mainly wind driven, experiencing a complete reversal between seasons due to a similar change in the wind field. Currents at the inner-shelf have a polarized nature, with the alongshore velocity mostly driven by forcings at the sub-inertial frequency band and the cross-shore velocity mainly supra-inertially forced, with the tidal currents playing an important role at this direction. The contribution of the forcing mechanisms at the mid-shelf changes between seasons. During the summer, forcings in the two frequency bands are important to drive the currents with a similar contribution of the tidal currents. On the other hand, during the autumn season, the alongshore velocity is mostly driven by sub-inertial forcings and tidally driven currents still remain important in both directions. Moreover, during the autumn when the stratification is weaker, the response of the shelf currents to the wind forcing presents a barotropic signature. The meso-scale processes related to the WBC flowing at the shelf/slope region also affect the circulation within the shelf, which contribute to cause significant current reversals during the autumn season. Currents at the shelf-estuary connection are clearly supra-inertially forced with the tidal currents playing a key role in the generation of the along-channel velocities. The sub-inertial forcings at this location act mainly to drive the weak ebb currents which were highly correlated with both local and remote wind forcing during the summer season. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
During "Meteor" Cruise 6/1966 in the northwest Atlantic a systematic survey of the bottom topography of the southeast Greenland continental margin was undertaken. Eighty-seven profiles transverse to the shelf edge at distances of 3-4 nautical miles and two longitudinal profiles parallel to the coast were carried out with the ELAC Narrow Beam Echo-Sounder giving a reliable record of even steep slopes. On the basis of the echo soundings the topography and morphology of the continental shelf and slope are evaluated. A detailed bathymetric chart and a serial profile chart were designed as working material for the morphological research. These maps along with the original echograms are morphometrically evaluated. The analysis of the sea bottom features is the basis of a subsequent morphogenetical interpretation, verified and extended by means of interpretation of magnetic data and sediment analysis (grain size, roundness, lithology). The results of the research are expressed in a geomorphological map. The primary findings can be summarized as follows: 1) The southeast Greenland shelf by its bottom topography can be clearly designated as a glacially formed area. The glacial features of the shelf can be classified into two zones nearly parallel to the coast: glacial erosion forms on the inner shelf and glacial accumulation forms on the outer shelf. The inner shelf is characterized by the rugged and hummocky topography of ice scoured plains with clear west/east slope asymmetry. On the outer shelf three types of glacial accumulation forms can be recognized: ice margin deposits with clearly expressed terminal moraines, glacial till plains and glaciomarine outwash fans. Both zones of the shelf can be subdivided into two levels of relief. The ice scoured plains, with average depths of 240 meters (m), are dissected to a maximum depth of 1060 m (Gyldenloves Trough) by trough valleys, which are the prolongations of the Greenland fjords. The banks of the outer shelf, with an average depth of 180 m, surround glacial basins with a maximum depth of 670 meters. 2) The sediments of the continental shelf can be classified as glacial due to their grain size distribution and the degree of roundness of the gravel particles. The ice margin deposits on the outer shelf can be recognized by their high percentage of gravels. On the inner shelf a rock surface is suggested, intermittently covered by glacial deposits. In the shelf troughs fine-grained sediments occur mixed with gravels. 3) Topography and sediments show that the southeast Greenland shelf was covered by an ice sheet resting on the sea floor during the Pleistocene ice-age. The large end moraines along the shelf edge probably indicate the maximum extent of the Wurm shelf ice resting on the sea floor. The breakthroughs of the end moraines in front of the glacial basins suggest that the shelf ice has floated further seaward over the increasing depths. 4) Petrographically the shelf sediments consist of gneisses, granites and basalts. While gneisses and granites occire on the nearby coast, basalt is not known to exist here. Either this material has been drifted by icebergs from the basalt province to the north or exists on the southeast Greenland shelf itself. The last interpretation is supported bythe high portion of basalt contained in the sediment samples taken and the strong magnetic anomalies probably caused by basaltic intrusions. 5) A magnetic profile allows the recognition of two magnetically differing areas which approximately coincide with the glacial erosion and accumulation zones. The inner shelf shows a strong and variable magnetic field because the glacially eroded basement forms the sea floor. The outer shelf is characterized by a weak and homogenous magnetic field, as the magnetized basement lies at greater depthy, buried by a thick cover of glacial sediments. The strong magnetic anomalies of the inner shelf are probably caused by dike swarms, similar to those observed further to the north in the Kangerdlugssuaq Fjord region. This interpretation is supported by the high basalt content of the sediment samples and the rough topography of the ice scoured plains which correlates in general with the magnetic fluctuations. The dike structures of the basement have been differentially eroded by the shelf ice. 6) The continental slope, extending from the shelf break at 313 m to a depth of 1270 m with an average slope of 11°, is characterized by delta-shaped projections in front of the shelf basins, by marginal plateaus, ridges and hills, by canyons and slumping features. The projections could be identified as glaciomarine sediment fans. This conclusion is supported by the strong decrease of magnetic field intensity. The deep sea hills and ridges with their greater magnetic intensities have to be regarded as basement outcrops projecting through the glaciomarine sediment cover. The upper continental rise, sloping seaward at about 2°, is composed of wide sediment fans and slump material. A marginal depression on the continental rise running parallel to the shelf edge has been identified. In this depression bottom currents capable of erosion have been recorded. South of Cape Farvel the depression extends to the accumulation zone of the "Eirik" sedimentary ridge. 7) By means of a study of the recent marine processes, postglacial modification of the ice-formed relief can be postulated. The retention effect of the fjord troughs and the high velocity of the East Greenland stream prevents the glacial features from being buried by sediments. Bottom currents capable of active erosion have only been found in the marginal depression on the continental rise. In addition, at the time of the lowest glacio-eustatic sea level, the shelf bottom was not situated in the zone of wave erosion. Only on the continental slope and rise bottom currents, sediment slumps and turbidity currents have led to significant recent modifications. Considering these results, the geomorphological development of the southeast Greenland continental terrace can be suggested as follows: 1. initial formation of a "peneplain", 2. fluvial incision, 3. submergence, and finally 4. glacial modification.
Resumo:
The Antarctic continental slope spans the depths from the shelf break (usually between 500 and 1000 m) to ~3000 m, is very steep, overlain by 'warm' (2-2.5 °C) Circumpolar Deep Water (CDW), and life there is poorly studied. This study investigates whether life on Antarctica's continental slope is essentially an extension of the shelf or the abyssal fauna, a transition zone between these or clearly distinct in its own right. Using data from several cruises to the Weddell Sea and Scotia Sea, including the ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) I-III, BIOPEARL (Biodiversity, Phylogeny, Evolution and Adaptive Radiation of Life in Antarctica) 1 and EASIZ (Ecology of the Antarctic Sea Ice Zone) II cruises as well as current databases (SOMBASE, SCAR-MarBIN), four different taxa were selected (i.e. cheilostome bryozoans, isopod and ostracod crustaceans and echinoid echinoderms) and two areas, the Weddell Sea and the Scotia Sea, to examine faunal composition, richness and affinities. The answer has important ramifications to the link between physical oceanography and ecology, and the potential of the slope to act as a refuge and resupply zone to the shelf during glaciations. Benthic samples were collected using Agassiz trawl, epibenthic sledge and Rauschert sled. By bathymetric definition, these data suggest that despite eurybathy in some of the groups examined and apparent similarity of physical conditions in the Antarctic, the shelf, slope and abyssal faunas were clearly separated in the Weddell Sea. However, no such separation of faunas was apparent in the Scotia Sea (except in echinoids). Using a geomorphological definition of the slope, shelf-slope-abyss similarity only changed significantly in the bryozoans. Our results did not support the presence of a homogenous and unique Antarctic slope fauna despite a high number of species being restricted to the slope. However, it remains the case that there may be a unique Antarctic slope fauna, but the paucity of our samples could not demonstrate this in the Scotia Sea. It is very likely that various ecological and evolutionary factors (such as topography, water-mass and sediment characteristics, input of particulate organic carbon (POC) and glaciological history) drive slope distinctness. Isopods showed greatest species richness at slope depths, whereas bryozoans and ostracods were more speciose at shelf depths; however, significance varied across Weddell Sea and Scotia Sea and depending on bathymetric vs. geomorphological definitions. Whilst the slope may harbour some source populations for localised shelf recolonisation, the absence of many shelf species, genera and even families (in a poorly dispersing taxon) from the continental slope indicate that it was not a universal refuge for Antarctic shelf fauna.
Resumo:
Distinct facies types, classified in radiocarbon-dated sediments from the shelf of the Lazarev Sea, East Antarctica, reveal a detailed history of processes that have controlled sedimentation during the deglaciation over the last 10,000 yr. The ice retreat on this part of the Antarctic shelf started 9500 yr BP, marked by the deposition of laminated sediments, deposited from a floating ice shelf. These laminites, which occur on top of diamictons laid down from a grounded ice sheet, are the basal sediments of the postglacial sequence. The intensity of the Antarctic Coastal Current (ACC), directed by shelf morphology, controlled sedimentation of the postglacial facies. A residual glaciomarine sediment with the fine fraction winnowed by strong currents developed from 9000-8000 yr BP in the western part of the investigation area and from 9000-5000 yr BP in the eastern part, closer to the prominent 'Fenno Deep' trough. Current velocities apparently decreased between 8000 and 2000 yr BP due to a deflection of the ACC by advancing ice tongues to the east of the investigation area during the 'Hypsithermal'. This led to a deposition of fine-grained sediments, and clay mineralogy suggests a continental source, possibly near the grounding line of the Nivl Ice Shelf, rather than a winnowing of sediments near the shelf break or advection from deeper water. Current velocities intensified after 2000 yr BP, removed fine material from these sediments and led to a relict sediment, consisting of coarse bryozoan and molluscan debris.
Resumo:
Abstract: The history of grounded ice-sheet extent on the southern Weddell Sea shelf during the Last Glacial Maximum (LGM) and the timing of post-LGM ice-sheet retreat are poorly constrained. Several glaciological models reconstructed widespread grounding and major thickening of the Antarctic Ice Sheet in the Weddell Sea sector at the LGM. In contrast, recently published onshore data and modelling results concluded only very limited LGM-thickening of glaciers and ice streams feeding into the modern Filchner and Ronne ice shelves. These studies concluded that during the LGM ice shelves rather than grounded ice covered the Filchner and Ronne troughs, two deep palaeo-ice stream troughs eroded into the southern Weddell Sea shelf. Here we review previously published and unpublished marine geophysical and geological data from the southern Weddell Sea shelf. The stratigraphy and geometry of reflectors in acoustic sub-bottom profiles are similar to those from other West Antarctic palaeo-ice stream troughs, where grounded ice had advanced to the shelf break at the LGM. Numerous cores from the southern Weddell Sea shelf recovered sequences with properties typical for subglacially deposited tills or subglacially compacted sediments. These data sets give evidence that grounded ice had advanced across the shelf during the past, thereby grounding in even the deepest parts of the Filchner and Ronne troughs. Radiocarbon dates from glaciomarine sediments overlying the subglacial deposits are limited, but indicate that the ice grounding occurred at the LGM and that ice retreat started before ~15.1 corrected 14C kyrs before present (BP) on the outer shelf and before ~7.7 corrected 14C kyrs BP on the inner shelf, which is broadly synchronous with ice retreat in other Antarctic sectors. The apparent mismatch between the ice-sheet reconstructions from marine and terrestrial data can be attributed to ice streams with very low surface profiles (similar to those of "ice plains") that had advanced through Filchner Trough and Ronne Trough at the LGM. Considering the global sea-level lowstand of ~130 metres below present, a low surface slope of the expanded LGM-ice sheet in the southern Weddell Sea can reconcile grounding-line advance to the shelf break with limited thickening of glaciers and ice streams in the hinterland. This scenario implies that ice-sheet growth in the Weddell Sea sector during the LGM and ice-sheet drawdown throughout the last deglaciation could only have made minor contributions to the major global sea-level fluctuations during these times.
Resumo:
Anthropogenic activities and land-based inputs into the sea may influence the trophic structure and functioning of coastal and continental shelf ecosystems, despite the numerous opportunities and services the latter offer to humans and wildlife. In addition, hydrological structures and physical dynamics potentially influence the sources of organic matter (e.g., terrestrial versus marine, or fresh material versus detrital material) entering marine food webs. Understanding the significance of the processes that influence marine food webs and ecosystems (e.g., terrestrial inputs, physical dynamics) is crucially important because trophic dynamics are a vital part of ecosystem integrity. This can be achieved by identifying organic matter sources that enter food webs along inshore–offshore transects. We hypothesised that regional hydrological structures over wide continental shelves directly control the benthic trophic functioning across the shelf. We investigated this issue along two transects in the northern ecosystem of the Bay of Biscay (north-eastern Atlantic). Carbon and nitrogen stable isotope analysis (SIA) and fatty acid analysis (FAA) were conducted on different complementary ecosystem compartments that include suspended particulate organic matter (POM), sedimentary organic matter (SOM), and benthic consumers such as bivalves, large crustaceans and demersal fish. Samples were collected from inshore shallow waters (at ∼1 m in depth) to more than 200 m in depth on the offshore shelf break. Results indicated strong discrepancies in stable isotope (SI) and fatty acid (FA) compositions in the sampled compartments between inshore and offshore areas, although nitrogen SI (δ15N) and FA trends were similar along both transects. Offshore the influence of a permanently stratified area (described previously as a “cold pool”) was evident in both transects. The influence of this hydrological structure on benthic trophic functioning (i.e., on the food sources available for consumers) was especially apparent across the northern transect, due to unusual carbon isotope compositions (δ13C) in the compartments. At stations under the cold pool, SI and FA organism compositions indicated benthic trophic functioning based on a microbial food web, including a significant contribution of heterotrophic planktonic organisms and/or of SOM, notably in stations under the cold pool. On the contrary, inshore and shelf break areas were characterised by a microalgae-based food web (at least in part for the shelf break area, due to slope current and upwelling that can favour fresh primary production sinking on site). SIA and FAA were relevant and complementary tools, and consumers better medium- to long-term system integrators than POM samples, for depicting the trophic functioning and dynamics along inshore–offshore transects over continental shelves.
Resumo:
This cruise report is a summary of a field survey conducted in coastal-ocean waters of the Mid-Atlantic Bight from Nags Head, North Carolina to Cape Cod, Massachusetts and from approximately 1 nautical mile (nm) of shore seaward to the shelf break (100 m). The survey was conducted May 12 - May 21, 2006 on NOAA Ship NANCY FOSTER Cruise NF-06-06-NCCOS. Multiple indicators of ecological condition were sampled synoptically at each of 49 stations throughout the region using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, pH, sediment grain size, and organic carbon content. The overall purpose of the survey was to collect data to assess the status of ecological condition in coastal-ocean waters of the region, based on these various indicators, and to provide this information as a baseline for determining how environmental conditions may be changing with time. The results will be of value in helping to broaden our understanding of the status of ecological resources and their controlling factors, including impacts of potential ecosystem stressors, in such strategic coastal areas. (18pp.) (PDF contains 24 pages)
Resumo:
Arrowtooth flounder (Atheresthes stomias) has the highest biomass of any groundfish species in the Gulf of Alaska, is a voracious predator of age 1 walleye pollock (Theragra chalcogramma), and is a major component in the diet of Steller sea lions (Eumetopias jubatus). Owing to its ecological importance in the Gulf of Alaska and the limited information available on its reproduction, interest has intensified in describing its spawning and early life history. A study was undertaken in late January–February 2001–2003 in the Gulf of Alaska to obtain information on adult spawning location, depth distribution, and sexual maturity, and to obtain fertilized eggs for laboratory studies. Adults were found 200–600 m deep east of Kodiak Island over the outer continental shelf and upper slope, and southwest along the shelf break to the Shumagin Islands. Most ripe females (oocytes extruded with light pressure) were found at 400 m and most ripe males (milt extruded with light pressure) were found at depths ≥450 m. Eggs were fertilized and incubated in the laboratory at 3.0°, 4.5°, and 6.0°C. Eggs were reared to hatching, but larvae did not survive long enough to complete yolk absorption and develop pigment. Eggs were staged according to morphological hallmarks and incubation data were used to produce a stage duration table and a regression model to estimate egg age based on water temperature and developmental stage. Arrowtooth flounder eggs (1.58–1.98 mm in diameter) were collected in ichthyoplankton surveys along the continental shelf edge, primarily at depths ≥400 m. Early-stage eggs were found in tows that sampled to depths of ≥450 m. Larvae, which hatch between 3.9 and 4.8 mm standard length, increased in abundance with depth. Observations on arrowtooth flounder eggs and early-stage larvae were used to complete the description of the published partial developmental series.(PDF file contains 34 pages.)
Resumo:
With the near extinction of many spawning aggregations of large grouper and snapper throughout the Caribbean, Gulf of Mexico, and tropical Atlantic, we need to provide baselines for their conservation. Thus, there is a critical need to develop techniques for rapidly assessing the remaining known (and unknown) aggregations. To this end we used mobile hydroacoustic surveys to estimate the density, spatial extent, and total abundance of a Nassau grouper spawning aggregation at Little Cayman Island, Cayman Islands, BWI. Hydroacoustic estimates of abundance, density, and spatial extent were similar on two sampling occasions. The location and approximate spatial extent of the Nassau grouper spawning aggregation near the shelf-break was corroborated by diver visual observations. Hydroacoustic density estimates were, overall, three-times higher than the average density observed by divers; however, we note that in some instances diver-estimated densities in localized areas were similar to hydroacoustic density estimates. The resolution of the hydroacoustic transects and geostatistical interpolation may have resulted in over-estimates in fish abundance, but still provided reasonable estimates of total spatial extent of the aggregation. Limitations in bottom time for scuba and visibility resulted in poor coverage of the entire Nassau grouper aggregation and low estimates of abundance when compared to hydroacoustic estimates. Although the majority of fish in the aggregation were well off bottom, fish that were sometimes in close proximity to the seafloor were not detected by the hydroacoustic survey. We conclude that diver observations of fish spawning aggregations are critical to interpretations of hydroacoustic surveys, and that hydroacoustic surveys provide a more accurate estimate of overall fish abundance and spatial extent than diver observations. Thus, hydroacoustics is an emerging technology that, when coupled with diver observations, provides a comprehensive survey method for monitoring spawning aggregations of fish.
Resumo:
As part of a multibeam and side scan sonar (SSS) benthic survey of the Marine Conservation District (MCD) south of St. Thomas, USVI and the seasonal closed areas in St. Croix—Lang Bank (LB) for red hind (Epinephelus guttatus) and the Mutton Snapper (MS) (Lutjanus analis) area—we extracted signals from water column targets that represent individual and aggregated fish over various benthic habitats encountered in the SSS imagery. The survey covered a total of 18 km2 throughout the federal jurisdiction fishery management areas. The complementary set of 28 habitat classification digital maps covered a total of 5,462.3 ha; MCDW (West) accounted for 45% of that area, and MCDE (East) 26%, LB 17%, and MS the remaining 13%. With the exception of MS, corals and gorgonians on consolidated habitats were significantly more abundant than submerged aquatic vegetation (SAV) on unconsolidated sediments or unconsolidated sediments. Continuous coral habitat was the most abundant consolidated habitat for both MCDW and MCDE (41% and 43% respectively). Consolidated habitats in LB and MS predominantly consisted of gorgonian plain habitat with 95% and 83% respectively. Coral limestone habitat was more abundant than coral patch habitat; it was found near the shelf break in MS, MCDW, and MCDE. Coral limestone and coral patch habitats only covered LB minimally. The high spatial resolution (0.15 m) of the acquired imagery allowed the detection of differing fish aggregation (FA) types. The largest FA densities were located at MCDW and MCDE over coral communities that occupy up to 70% of the bottom cover. Counts of unidentified swimming objects (USOs), likely representing individual fish, were similar among locations and occurred primarily over sand and shelf edge areas. Fish aggregation school sizes were significantly smaller at MS than the other three locations (MCDW, MCDE, and LB). This study shows the advantages of utilizing SSS in determining fish distributions and density.
Resumo:
Environmental variability affects the distributions of most marine fish species. In this analysis, assemblages of rockfish (Sebastes spp.) species were defined on the basis of similarities in their distributions along environmental gradients. Data from 14 bottom trawl surveys of the Gulf of Alaska and Aleutian Islands (n=6767) were used. Five distinct assemblages of rockfish were defined by geographical position, depth, and temperature. The 180-m and 275-m depth contours were major divisions between assemblages inhabiting the shelf, shelf break, and lower continental slope. Another noticeable division was between species centered in southeastern Alaska and those found in the northern Gulf of Alaska and Aleutian Islands. The use of environmental variables to define the species composition of assemblages is different from the use of traditional methods based on clustering and nonparametric statistics and as such, environmentally based analyses should result in predictable assemblages of species that are useful for ecosystem-based management.
Resumo:
Six years of bottom-trawl survey data, including over 6000 trawls covering over 200 km2 of bottom area throughout Alaska’s subarctic marine waters, were analyzed for patterns in species richness, diversity, density, and distribution of skates. The Bering Sea continental shelf and slope, Aleutian Islands, and Gulf of Alaska regions were stratified by geographic subregion and depth. Species richness and relative density of skates increased with depth to the shelf break in all regions. The Bering Sea shelf was dominated by the Alaska skate (Bathyraja parmifera), but species richness and diversity were low. On the Bering Sea slope, richness and diversity were higher in the shallow stratum, and relative density appeared higher in subregions dominated by canyons. In the Aleutian Islands and Gulf of Alaska, species richness and relative density were generally highest in the deepest depth strata. The data and distribution maps presented here are based on species-level data collected throughout the marine waters of Alaska, and this article represents the most comprehensive summary of the skate fauna of the region published to date.
Resumo:
The U.S. East Coast pelagic longline fishery has a history of interactions with marine mammals, where animals are hooked and entangled in longline gear. Pilot whales (Globicephala spp.) and Risso’s dolphin (Grampus griseus) are the primary species that interact with longline gear. Logistic regression was used to assess the environmental and gear characteristics that influence interaction rates. Pilot whale inter-actions were correlated with warm water temperatures, proximity to the shelf break, mainline lengths greater than 20 nautical miles, and damage to swordfish catch. Similarly, Risso’s dolphin interactions were correlated with geographic location, proximity the shelf break, the length of the mainline, and bait type. The incidental bycatch of marine mammals is likely associated with depredation of the commercial catch and is increased by the overlap between marine mammal and target species habitats. Altering gear characteristics and fishery practices may mitigate incidental bycatch and reduce economic losses due to depredation.