968 resultados para sensible heat loss


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Regional Climate Model (RegCM3) 10-year (1990-1999) simulation over southwestern South Atlantic Ocean (SAO) is evaluated to assess the mean climatology and the simulation errors of turbulent fluxes over the sea. Moreover, the relationship between these fluxes and the rainfall over some cyclogenetic areas is also analyzed. The RegCM3 results are validated using some reanalyses datasets (ERA40, R2, GPCP and WHOI). The summer and winter spatial patterns of latent and sensible heat fluxes simulated by the RegCM3 are in agreement with the reanalyses (WHOI, R2 and ERA40). They show large latent heat fluxes exchange in the subtropical SAO and at higher latitudes in the warm waters of Brazil Current. In particular, the magnitude of RegCM3 latent heat fluxes is similar to the WHOI, which is probably related to two factors: (a) small specific humidity bias, and (b) the RegCM3 flux algorithm. In contrast, the RegCM3 presents large overestimation of sensible heat flux, though it simulates well their spatial pattern. This simulation error is associated with the RegCM3 underestimation of the 2-m air temperature. In southwestern SAO, in three known cyclogenetic areas, the reanalyses and the RegCM3 show the existence of different physical mechanisms that control the annual cycles of latent/sensible heating and rainfall. It is shown that over the eastern coast of Uruguay (35A degrees-43A degrees S) and the southeastern coast of Argentina (44A degrees-52A degrees S) the sea-air moisture and heat exchange play an important role to control the annual cycle of precipitation. This does not happen on the south/southeastern coast of Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nove vacas Holandesas lactantes com 526 ± 5 kg de peso corporal (cinco predominantemente pretas e quatro predominantemente brancas), criadas em região tropical e manejadas em pastagens, foram observadas com os objetivos de determinar simultaneamente as taxas de evaporação cutânea e respiratória em ambiente tropical e desenvolver modelos de predição. Para a medição da perda de calor latente pela superfície corporal, utilizou-se uma cápsula ventilada e, para a perda por respiração, utilizou-se uma máscara facial. Os resultados mostraram que as vacas que tinham maior peso corporal (classe 2 e 3) apresentaram maiores taxas evaporativas. Quando a temperatura do ar aumentou de 10 para 36ºC e a umidade relativa do ar caiu de 90 para 30%, a eliminação de calor por evaporação respiratória aumentou de aproximadamente 5 para 57 W m-2 e a evaporação na superfície corporal passou de 30 para 350 W m-2. Esses resultados confirmam que a eliminação de calor latente é o principal mecanismo de perda de energia térmica sob altas temperaturas (>30ºC); a evaporação cutânea é a maior via e corresponde a aproximadamente 85% da perda total de calor, enquanto o restante é eliminado pelo sistema respiratório. O modelo para predizer o fluxo de perda de calor latente baseado em variáveis fisiológicas e ambientais pode ser utilizado para estimar a contribuição da evaporação na termorregulação, enquanto o modelo baseado somente na temperatura do ar deve ser usado apenas para a simples caracterização do processo evaporativo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of thermal shields to reduce radiation heat loss in Siemens-type CVD reactors is analyzed, both theoretically and experimentally. The potential savings from the use of the thermal shields is first explored using a radiation heat model that takes emissivity variations with wavelength into account, which is important for materials that do not behave as grey bodies. The theoretical calculations confirm that materials with lower surface emissivity lead to higher radiation savings. Assuming that radiation heat loss is responsible for around 50% of the total power consumption, a reduction of 32.9% and 15.5% is obtained if thermal shields with constant emissivities of 0.3 and 0.7 are considered, respectively. Experiments considering different thermal shields are conducted in a laboratory CVD reactor, confirming that the real materials do not behave as grey bodies, and proving that significant energy savings in the polysilicon deposition process are obtained. Using silicon as a thermal shield leads to energy savings of between 26.5-28.5%. For wavelength-dependent emissivities, the model shows that there are significant differences in radiation heat loss, of around 25%, when compared to that of constant emissivity. The results of the model highlight the importance of having reliable data on the emissivities within the relevant range of wavelengths, and at deposition temperatures, which remains a pending issue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known of energy balance in low latitude wetlands where there is a year-round growing season and a climate best defined by wet and dry seasons. The Florida Everglades is a highly managed and extensive subtropical wetland that exerts a substantial influence on the hydrology and climate of the south Florida region. However, the effects of seasonality and active water management on energy balance in the Everglades ecosystem are poorly understood. An eddy covariance and micrometeorological tower was established in a short-hydroperiod Everglades marsh to examine the dominant environmental controls on sensible heat (H) and latent energy (LE) fluxes, as well as the effects of seasonality on these parameters. Seasonality differentially affected H and LE fluxes in this marsh, such that H was principally dominant in the dry season and LE was strongly dominant in the wet season. The Bowen ratio was high for much of the dry season (1.5–2.4), but relatively low (H and LE fluxes across nearly all seasons and years (). However, the 2009 dry season LE data were not consistent with this relationship () because of low seasonal variation in LE following a prolonged end to the previous wet season. In addition to net radiation, H and LE fluxes were significantly related to soil volumetric water content (VWC), water depth, air temperature, and occasionally vapor pressure deficit. Given that VWC and water depth were determined in part by water management decisions, it is clear that human actions have the ability to influence the mode of energy dissipation from this ecosystem. Impending modifications to water management under the Comprehensive Everglades Restoration Plan may shift the dominant turbulent flux from this ecosystem further toward LE, and this change will likely affect local hydrology and climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adequate environmental temperature during the brooding period is very important to future broiler performance. Thus, the objective of this study was to investigate the extent to which environmental temperature affects the body weight and cloacal and surface (back, head, wing, and shank) temperatures. The study also investigated the sensible heat loss by radiation of broiler chicks reared at three environmental temperatures (35, 25, and 20 degrees C) up to 7 days of life. The results showed that chicks raised at low environmental temperature (20 degrees C) had lower body weight at 7 days of age. Birds kept at 20 degrees C also had significantly lower cloacal and surface temperatures than did other birds. The most marked difference was seen in the shanks. These findings revealed that body weight declined in chicks reared at 20 degrees C, and radiant heat loss (W) was nine times higher than for the birds kept at 35 degrees C at 7 days of age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we investigate the cold front passage effects on sensible and latent heat flux in a tropical hydroelectric reservoir. The study area, Itumbiara reservoir (Goiás State/Brazil) at the beginning of the austral winter, is characterized by the presence of a weak thermal stratification and the passage of several cold fronts from higher latitudes of South America. Sensible and latent heat fluxes were estimated considering the atmospheric boundary layer stability. In situ and MODIS water surface temperature data were used to adjust the coefficients for momentum and heat exchanges between water and atmosphere and spatialize the sensible and latent heat fluxes. The results showed that during a cold front event the sensible heat flux can be up to five times greater than the flux observed before. The latent heat flux tends to decrease during the cold front but increase again after the passage. The highest values of heat loss were observed at littoral zone and some Reservoir's embayment. The heat loss intensification can be separated in two moments: first, during the cold front passage, when the wind speed increases and the air temperature decreases; second, after the cold front passage, with air humidity decreasing. This can be considered a key process to understanding the heat loss in the Itumbiara reservoir. © 2013 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three years of meteorological data collected at the WLEF-TV tower were used to drive a revised version of the Simple Biosphere (SiB 2.5) Model. Physiological properties and vegetation phenology were specified from satellite imagery. Simulated fluxes of heat, moisture, and carbon were compared to eddy covariance measurements taken onsite as a means of evaluating model performance on diurnal, synoptic, seasonal, and interannual time scales. The model was very successful in simulating variations of latent heat flux when compared to observations, slightly less so in the simulation of sensible heat flux. The model overestimated peak values of sensible heat flux on both monthly and diurnal scales. There was evidence that the differences between observed and simulated fluxes might be linked to wetlands near the WLEF tower, which were not present in the SiB simulation. The model overestimated the magnitude of the net ecosystem exchange of CO2 in both summer and winter. Mid-day maximum assimilation was well represented by the model, but late afternoon simulations showed excessive carbon uptake due to misrepresentation of within-canopy shading in the model. Interannual variability was not well simulated because only a single year of satellite imagery was used to parameterize the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During a four weeks anchoring station of R.V. ,,Meteor" on the equator at 30° W longitude, vertical profiles of wind, temperature, and humidity were measured by means of a meteorological buoy carrying a mast of 10 m height. After eliminating periods of instrumental failure, 18 days are available for the investigation of the diurnal variations of the meteorological parameters and 9 days for the investigation of the vertical heat fluxes. The diurnal variations of the above mentioned quantities are caused essentially by two periodic processes: the 24-hourly changing solar energy supply and the 12-hourly oscillation of air pressure, which both originate in the daily rotation of the earth. While the temperature of the water and of the near water layers of the air show a 24 hours period in their diurnal course, the wind speed, as a consequence of the pressure wave, has a 12 hours period, which is also observable in evaporation and, consequently, in the water vapor content of the surface layer. Concerning the temperature, a weak dependence of the daily amplitude on height was determined. Further investigation of the profiles yields relations between the vertical gradients of wind, temperature, and water vapor and the wind speed, the difference between sea and air of temperature and water vapor, respectively, thus giving a contribution to the problem of parameterizing the vertical fluxes. Mean profile coefficients for the encountered stabilities, which were slightly unstable, are presented, and correction terms are given due to the fact that the conditions at the very surface are not sufficiently represented by measuring in a water depth of 20 cm and assuming water vapor saturation. This is especially true for the water vapor content, where the relation between the gradient and the air-sea difference suggests a reduction of relative humidity to appr. 96% at the very surface, if the gradients are high. This effect may result in an overestimation of the water vapor flux, if a ,,bulk"-formula is used. Finally sensible and latent heat fluxes are computed by means of a gradient-formula. The influence of stability on the transfer process is taken into account. As the air-sea temperature differences are small, sensible heat plays no important role in that region, but latent heat shows several interesting features. Within the measuring period of 18 days, a regular variation by a factor of ten is observed. Unperiodic short term variations are superposed by periodic diurnal variations. The mean diurnal course shows a 12-hours period caused by the vertical wind speed gradient superposed by a 24-hours period due to the changing stabilities. Mean values within the measuring period are 276 ly/day for latent heat and 9.41y/day for sensible heat.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To reduce the natural convection heat loss from enclosures many researchers used convection suppression devices in the past. In this study a single baffle is used under the top tip to investigate numerically the natural convection heat loss in an attic shaped enclosure which is a cost effective approach. The case considered here is one inclined wall of the enclosure is uniformly heated while the other inclined wall is uniformly cooled with adiabatic bottom wall. The finite volume method has been used to discretize the governing equations, with the QUICK scheme approximating the advection term. The diffusion terms are discretized using central-differencing with second order accuracy. A wide range of governing parameters are studied (Rayleigh number, aspect ratio, baffle length etc.). It is observed that the heat transfer due to natural convection in the enclosure reduces when the baffle length is increased. Effects of other parameters on heat transfer and flow field are described in this study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Parameterization of sensible heat and momentum fluxes as inferred from an analysis of tower observations archived during MONTBLEX-90 at Jodhpur is proposed, both in terms of standard exchange coefficients C-H and C-D respectively and also according to free convection scaling. Both coefficients increase rapidly at low winds (the latter more strongly) and with increasing instability. All the sensible heat flux data at Jodhpur (wind speed at 10m <(U)over bar (10)>, < 8ms(-1)) also obey free convection scaling, with the flux proportional to the '4/3' power of an appropriate temperature difference such as that between 1 and 30 m. Furthermore, for <(U)over bar (10)> < 4 ms(-1) the momentum flux displays a linear dependence on wind speed.