815 resultados para semiconducting quaternary alloys
Resumo:
GaSb based cells as receivers in thermophotovoltaic system have attracted great interest and been extensively studied in the recent 15 years. Although nowadays the manufacturing technologies have made a great progress, there are still some details need to make a further study. In this paper, undoped and doped GaSb layers were grown on n-GaSb (100) substrates from both Ga-rich and Sb-rich solutions using liquid phase epitaxy (LPE) technique. The nominal segregation coefficients k of intentional doped Zn were 1.4 and 8.8 determined from the two kinds of GaSb epitaxial layers. Additionally, compared with growing from Ga-rich solutions, the growing processes from Sb-rich solutions were much easier to control and the surface morphologies of epitaxial layers were smoother. Further-more, in order to broaden the absorbing edge, Ga1-xInxAsySb1-y quaternary alloys were grown on both GaSb and InAs substrates from In-rich solutions, under different temperature respectively.
Resumo:
Two quaternary InAlGaN films were grown by metal-organic chemical-vapor deposition (MOCVD) on sapphire (0001) substrates with and without high-temperature GaN interlayer, respectively. The structural and optical properties of the quaternary films were investigated by high-resolution X-ray diffraction (HRXRD), high-resolution electron microscopy (HREM), temperature-dependent photoluminescence (PL) spectroscopy and time-resolved photoluminescence (TRPL) spectroscopy. According to the HRXRD and PL results, it is demonstrated that two samples have the same crystal quality. The TRPL signals of both samples were fitted well as a stretched exponential decay from 14 K to 250 K, indicating significant disorder in the materials, which is attributed to recombination of excitons localized in disorder quantum nanostructures such as quantum dots or quantum disks originating from indium (In) clusters or In composition fluctuation. The cross-section HREM measurement further proves that there exist disorder quantum nanostructures in the quaternary. By investigating the temperature dependence of the dispersive exponent beta, it is shown that the stretched exponential decays of the two samples originate from different mechanisms. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
This paper discusses on effect of molybdenum on the Ti6Si2B formation in mechanically alloyed and hot-pressed Ti-xMo-22Si-11B (x= 2, 5, 7 and 10 at%) alloys. High-energy ball milling and hot pressing were utilized to produce homogeneous and dense materials, which were characterized by scanning electron microscopy, X-ray diffraction, electron dispersive spectrometry, and Vickers hardness. The excessive agglomeration during milling was more pronounced in Moricher powders, which was minimized with the formation of brittle phases. Hot pressing of mechanically alloyed Ti-xMo-22Si-11B powders produced dense samples containing lower pore amounts than 1%. Ti6Si2B was formed in microstructure of the hot-pressed Ti-2Mo-22Si-11B alloy only. In Mo-richer quaternary alloys, the Ti3Si and Ti5Si3 phases were preferentially formed during hot pressing. Oppositely to the ternary phase, the Ti3Si phase dissolved a significant Mo amount. Vickers hardness values were reduced in hot-pressed Ti-xMo-22Si-11B alloys containing larger Mo amounts, which were dissolved preferentially in Ti solid solution. © (2012) Trans Tech Publications, Switzerland.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
A large number of metal alloys are used in Dentistry for the manufacture of fixed and removable dentures. In the oral cavity, these structures are exposed to a chemically aggressive medium, like saliva and mechanical efforts, like mastication. In addition, acidic solutions containing fluoride ions are also frequently used in dental treatments to prevent dental plates and decays development. In this context, it was considered important to investigate the influence that a fourth element could exert when added to the ternary alloy Ni-Cr-Mo, largely used in Brazil. Therefore, electrochemical tests were done to evaluate the resistance to corrosion of quaternary alloy 65Ni-25Cr-5Mo-5Ta and 65Ni-25Cr-5Mo-5W in NaF solution 0,08mol / L, pH = 4.7. For greater understanding the microstructure and morphology of alloys were studied, through metallographic analysis, using optics microscopy and electron microscopy scanning. For the electrochemical tests were applied techniques traditionally used in corrosion researches, such as: potential measures in open circuit (OCP) and cyclic polarization (CP). It was found that both quaternary alloys showed very similar results. Comparing these quaternary alloys with the ternary 65Ni-25Cr-10Mo, it was found that the quaternary alloys exhibit greater resistance to corrosion, in other words, less passivation current density than the ternary alloy, showing that it is advantageous to add a fourth element in the alloy
Resumo:
A large number of metal alloys are used in Dentistry for the manufacture of fixed and removable dentures. In the oral cavity, these structures are exposed to a chemically aggressive medium, like saliva and mechanical efforts, like mastication. In addition, acidic solutions containing fluoride ions are also frequently used in dental treatments to prevent dental plates and decays development. In this context, it was considered important to investigate the influence that a fourth element could exert when added to the ternary alloy Ni-Cr-Mo, largely used in Brazil. Therefore, electrochemical tests were done to evaluate the resistance to corrosion of quaternary alloy 65Ni-25Cr-5Mo-5Ta and 65Ni-25Cr-5Mo-5W in NaF solution 0,08mol / L, pH = 4.7. For greater understanding the microstructure and morphology of alloys were studied, through metallographic analysis, using optics microscopy and electron microscopy scanning. For the electrochemical tests were applied techniques traditionally used in corrosion researches, such as: potential measures in open circuit (OCP) and cyclic polarization (CP). It was found that both quaternary alloys showed very similar results. Comparing these quaternary alloys with the ternary 65Ni-25Cr-10Mo, it was found that the quaternary alloys exhibit greater resistance to corrosion, in other words, less passivation current density than the ternary alloy, showing that it is advantageous to add a fourth element in the alloy
Resumo:
For the advancement of spinelectronicsmuch importance is attached to Heusler compounds. Especially compounds with the stoichiometry Co2YZ are supposed to exhibit a large asymmetry between majority and minority electrons at the Fermi edge. Ideally, only majority states are present. This property leads to high magnetoresistive effects. However, the experimental results available at present fall behind the expectations. In particular, a strong reduction of the spin asymmetry with increasing temperature is problematic. For this reason,rnthe investigation of further representatives of this material class as well as optimization of their deposition is required. Therefore, during the course of this work thin Heusler films with the composition Co2Cr0.6Fe0.4Al and Co2Mn1−xFexSi were fabricated. At first, this was accomplished by sputter deposition, which is the standard technique for the preparation of thin Heuslerrnfilms. It resulted also here in samples with high structural order. On the other hand, these films exhibit only a reduced magnetic moment. To improve this situation, a laser ablation system was constructed. The resulting film deposition under ultra-high vacuum led to a clear improvement especially of the magnetic properties. In addition to the improved deposition conditions, this method allowed the flexible variation of the film stoichiometry as well. This possibility was successfully demonstrated in this work by deposition of epitaxial Co2Mn1−xFexSi films. The availableness of these high quality quaternary alloys allowed the systematic investigation of their electronic properties. Band structure calculations predict that the substitution of Mn by Fe lead to a shift of the Fermi energy over the minority energy gap, whereas the density of states remains nearly unchanged. This prediction could by tested by electronic transport measurements. Especially the normal Hall effect, which was measured at these samples, shows a transition from a hole-like charge transport in Co2MnSi to an electron-like transport in Co2FeSi. This is in accordance with corresponding band structure calculations as well as with comparative XMCD experiments. Furthermore, the behavior of the anomalous Hall effect was studied. Here it could be seen, that the effect is influenced by two mechanisms: On the one hand an intrinsic contribution, caused by the topology of the Fermi surface and on the other hand by temperature dependent impurity scattering. These two effects have an opposing influence on the anomalous Hall effect. This can lead to a sign reversal of the anomalous contribution. This behavior has been predicted just recently and was here systematically investigated for the first time for Heusler compounds.
The electrochemical corrosion behaviour of quaternary gold alloys when exposed to 3.5% NaCl solution
Resumo:
Lower carat gold alloys, specifically 9 carat gold alloys, containing less than 40 % gold, and alloying additions of silver, copper and zinc, are commonly used in many jewellery applications, to offset high costs and poor mechanical properties associated with pure gold. While gold is considered to be chemically inert, the presence of active alloying additions raises concerns about certain forms of corrosion, particularly selective dissolution of these alloys. The purpose of this study was to systematically study the corrosion behaviour of a series of quaternary gold–silver–copper–zinc alloys using dc potentiodynamic scanning in saline (3.5 % NaCl) environment. Full anodic/cathodic scans were conducted to determine the overall corrosion characteristics of the alloy, followed by selective anodic scans and subsequent morphological and compositional analysis of the alloy surface and corroding media to determine the extent of selective dissolution. Varying degrees of selective dissolution and associated corrosion rates were observed after anodic polarisation in 3.5 % NaCl, depending on the alloy composition. The corrosion behaviour of the alloys was determined by the extent of anodic reactions which induce (1) formation of oxide scales on the alloy surface and or (2) dissolution of Zn and Cu species. In general, the improved corrosion characteristics of alloy #3 was attributed to the composition of Zn/Cu in the alloy and thus favourable microstructure promoting the formation of protective oxide/chloride scales and reducing the extent of Cu and Zn dissolution.
Resumo:
Stress corrosion cracking (SCC) is a well known form of environmental attack in low carat gold jewellery. It is desirable to have a quick, easy and cost effective way to detect SCC in alloys and prevent them from being used and later failing in their application. A facile chemical method to investigate SCC of 9 carat gold alloys is demonstrated. It involves a simple application of tensile stress to a wire sample in a corrosive environment such as 1–10 % FeCl3 which induces failure in less than 5 minutes. In this study three quaternary (Au, Ag, Cu and Zn) 9 carat gold alloy compositions were investigated for their resistance to SCC and the relationship between time to failure and processing conditions is studied. It is envisaged that the use of such a rapid and facile screening procedure at the production stage may readily identify alloy treatments that produce jewellery that will be susceptible to SCC in its lifetime.
Resumo:
The electrical resistivity of bulk semiconducting amorphous TlxSe100-x alloys with 0 ≤ x ≤ 25 has been investigated up to a pressure of 14 GPa and down to liquidnitrogen temperature by use of a Bridgman anvil device. All the glasses undergo a discontinuous pressure-induced semiconducting-to-metal transition. X-ray diffraction studies on the pressure-recovered samples show that the high-pressure phase is the crystalline phase. The pressure-induced crystalline products are identified to be a mixture of Se having a hexagonal structure with a = 4·37 Aring and c = 4·95 Aring and TlSe having a tetragonal structure with a = 8·0 Aring and c = 7·0 Aring
Resumo:
The discovery of a solid exhibiting m 3 5 point group symmetry by Shechtman et. al. (l) in a rapidly solidified Al-14at%Mn alloy has activated intensive studies of a new class of solids, termed as quasicrystals (2). While the original discovery reported the existence of quasicrystals in AI-Mn. AI-Fe and AI-Cr alloys, subsequent work has revealed their existence in Mg-Zn-Al(3,4), Mg-A]-Cu(5), AI-Mn-Si(6) and Ti-Ni-V(7) alloys (Table l).
Resumo:
From the quaternary Ti-Zr-Hf-Ni phase diagram. the cross-section at 20 at % Ni was selected for investigation. The icosahedral quasicrystalline, crystalline and amorphous phases were observed to form in nine kinds of rapidly solidified (TixZryHfz)(80)Ni-20 (x + y + z = 1) alloys at different compositions. The quasilattice constants of 0.519 and 0.531 nm were obtained for the icosahedral phase formed in the melt-spun Ti40Zr20Hf20Ni20 and Ti20Zr40Hf20Ni20 alloys. respectively. The icosahedral phase formed in the melt-spun Ti40Zr20Hf20Ni20 alloy especially is thermodynamically stable. The supercooled liquid region of the Ti20Zr20Hf40Ni20 glassy alloy reached 64 K. From these results a comparison of quasicrystal-forming and glass-forming abilities, was carried out. The quasicrystal-forming ability was reduced and glass-forming ability was improved with an increase in Hf and Zr contents in the (TixZryHfz)(80)Ni-20 alloys. On the other hand. an increase in Ti content caused an improvement in quasicrystal-forming ability.
Resumo:
The present research describes the modeling of the thermodynamic properties of the liquid Al-Ga-In-As alloys at 1073 and 1173 K, and investigates the solid-liquid equilibria in the systems. The isothermal molar excess free energy function for the liquid alloys is represented in terms of 37 parameters pertaining to six of the constituent binaries, four ternaries and the quaternary interactions in the system. The corresponding solid alloys which consist of AlAs, GaAs and InAs are assumed to be quasi-regular ternary solutions. The solidus and liquidus compositions are calculated at 1073 and 1173 K using the derived values of the partial components for the solid and liquid alloys at equilibrium. They are in good agreement with those of the experimentally determined values available in the literature. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Equations are developed for predicting the activity coefficients of oxygen dissolved in ternary liquid alloys. These are extensions of earlier treatments, and are based on a model in which each oxygen atom is assumed to make four bonds with neighboring metal atoms. It is also postulated that the strong oxygen-metal bonds distort the electronic configuration around the metal atoms bonded to oxygen, and that the quantitative reduction of the strength of bonds made by these atoms with all of the adjacent metal atoms is equivalent to a factor of approximately two. The predictions of the quasichemical equation which is derived agree satisfactorily with the partial molar free energies of oxygen in Ag-Cu-Sn solutions at 1200°C reported in literature. An extension of this treatment to multicomponent solutions is also indicated.
Resumo:
By using techniques of rapid quenching from the melt, metastable phases have been obtained in ternary alloys which contain tellurium as a major component and two of the three noble metals (Cu, Ag, Au) as minor components. The metastable phases found in this investigation are either simple cubic or amorphous. The formation of the simple cubic phase is discussed. The electrical resistance and the thermoelectric power of the simple cubic alloy (Au30Te70) have been measured and interpreted in terms of atomic bondings. The semiconducting properties of a metastable amorphous alloy (Au5Cu25Te70) have been measured. The experimental results are discussed in connection with a theoretical consideration of the validity of band theory in an amorphous solid. The existence of extrinsic conduction in an amorphous semiconductor is suggested by the result of electrical resistance and thermoelectric power measurements.