991 resultados para self-fertilization


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inbreeding depression is one of the main forces opposing the evolution of self-fertilization. Of central importance is the hypothesis that inbreeding depression and selfing coevolve antagonistically, generating either low selfing rate and high inbreeding depression or vice versa. However, there is limited evidence for this coevolution within species. We investigated this topic in the hermaphroditic snail Physa acuta. In this species, isolated individuals delay the onset of egg laying compared to individuals having access to mates. Longer delays (''waiting times'') indicate more intense selfing avoidance. We measured inbreeding depression and waiting time in a large quantitative-genetic experiment (281 outbred families derived from 26 natural populations). We observed large genetic variance for both traits and a strong positive genetic covariance between them, most of which resided within rather than among populations. It means that, within populations, individuals with higher mutation load avoided selfing more strongly on average. This genetic covariance may result from pleiotropy and/or linkage disequilibrium. Whatever its genetic architecture, the fact it emerges specifically when individuals are deprived of mates suggests it is not fortuitous and rather reflects the action of natural selection. We conclude that a diversity of mating strategies can arise within populations subjected to variation in inbreeding depression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-compatible hermaphroditic organisms that mix self-fertilization and outcrossing are of great interest for investigating the evolution of mating systems. We investigate the evolution of selfing in Lymnaea truncatula, a self-compatible hermaphroditic freshwater snail. We first analyze the consequences of selfing in terms of genetic variability within and among populations and then investigate how these consequences along with the species ecology (harshness of the habitat and parasitism) might govern the evolution of selfing. Snails from 13 localities (classified as temporary or permanent depending on their water availability) were sampled in western Switzerland and genotyped for seven microsatellite loci. F(IS) (estimated on adults) and progeny array analyses (on hatchlings) provided similar selfing rate estimates of 80%. Populations presented a low polymorphism and were highly differentiated (F(ST) = 0.58). Although the reproductive assurance hypothesis would predict higher selfing rate in temporary populations, no difference in selfing level was observed between temporary and permanent populations. However, allelic richness and gene diversity declined in temporary habitats, presumably reflecting drift. Infection levels varied but were not simply related to either estimated population selfing rate or to differences in heterozygosity. These findings and the similar selfing rates estimated for hatchlings and adults suggest that within-population inbreeding depression is low in L. truncatula.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Aims The frequency at which males can be maintained with hermaphrodites in androdioecious populations is predicted to depend on the selfing rate, because self-fertilization by hermaphrodites reduces prospective siring opportunities for males. In particular, high selfing rates by hermaphrodites are expected to exclude males from a population. Here, the first estimates are provided of the mating system from two wild hexaploid populations of the androdioecious European wind-pollinated plant M. annua with contrasting male frequencies.Methods Four diploid microsatellite loci were used to genotype 19-20 progeny arrays from two populations of M. annua, one with males and one without. Mating-system parameters were estimated using the program MLTR.Key Results Both populations had similar, intermediate outcrossing rates (t(m) = 0.64 and 0.52 for the population with and without males, respectively). The population without males showed a lower level of correlated paternity and biparental inbreeding and higher allelic richness and gene diversity than the population with males.Conclusions The results demonstrate the utility of new diploid microsatellite loci for mating system analysis in a hexaploid plant. It would appear that androdioecious M. annua has a mixed-mating system in the wild, an uncommon finding for wind-pollinated species. This study sets a foundation for future research to assess the relative importance of the sexual system, plant-density variation and stochastic processes for the regulation of male frequencies in M. annua over space and time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Colonization is likely to be more successful for species with an ability to self-fertilize and thus to establish new populations as single individuals. As a result, self-compatibility should be common among colonizing species. This idea, labelled 'Baker's law', has been influential in discussions of sexual-system and mating-system evolution. However, its generality has been questioned, because models of the evolution of dispersal and the mating system predict an association between high dispersal rates and outcrossing rather than selfing, and because of many apparent counter examples to the law. The contrasting predictions made by models invoking Baker's law versus those for the evolution of the mating system and dispersal urges a reassessment of how we should view both these traits. Here, I review the literature on the evolution of mating and dispersal in colonizing species, with a focus on conceptual issues. I argue for the importance of distinguishing between the selfing or outcrossing rate and a simple ability to self-fertilize, as well as for the need for a more nuanced consideration of dispersal. Colonizing species will be characterized by different phases in their life pattern: dispersal to new habitat, implying an ecological sieve on dispersal traits; establishment and a phase of growth following colonization, implying a sieve on reproductive traits; and a phase of demographic stasis at high density, during which new trait associations can evolve through local adaptation. This dynamic means that the sorting of mating-system and dispersal traits should change over time, making simple predictions difficult.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

656 I. 657 II. 658 III. 660 IV. 661 V. 663 VI. 663 VII. 664 VIII. 664 665 References 665 SUMMARY: Baker's law refers to the tendency for species that establish on islands by long-distance dispersal to show an increased capacity for self-fertilization because of the advantage of self-compatibility when colonizing new habitat. Despite its intuitive appeal and broad empirical support, it has received substantial criticism over the years since it was proclaimed in the 1950s, not least because it seemed to be contradicted by the high frequency of dioecy on islands. Recent theoretical work has again questioned the generality and scope of Baker's law. Here, we attempt to discern where the idea is useful to apply and where it is not. We conclude that several of the perceived problems with Baker's law fall away when a narrower perspective is adopted on how it should be circumscribed. We emphasize that Baker's law should be read in terms of an enrichment of a capacity for uniparental reproduction in colonizing situations, rather than of high selfing rates. We suggest that Baker's law might be tested in four different contexts, which set the breadth of its scope: the colonization of oceanic islands, metapopulation dynamics with recurrent colonization, range expansions with recurrent colonization, and colonization through species invasions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study analyzed the reproductive system and the pollen dispersion pattern of Qualea grandiflora progenies. This is a typical species from the Brazilian Cerrado about which there are not too many studies from the genetics point of view. The study was conducted in an area of 2.2 hectares located in the Conservation Unit managed by the Forest Institute of the state of São Paulo, Brazil (Assis State Forest). Total genomic DNA of 300 seeds from 25 plants (12 seeds from each plant) was extracted and amplified using specific primers to obtain microsatellite markers. Results showed that selfing is frequent among adults and progenies, and the species reproduces by outcrossing between related and unrelated individuals (0.913). The single-locus outcrossing rate was 0.632, which indicates that mating between unrelated individuals is more frequent than between related plants. The selfing rate was low (0.087), that is, the species is allogamous and self-fertilization is reduced. About 35% of the plants in the progenies were full-sibs, and about 57%, half-sibs. Besides, about 8% of the progenies were selfing siblings. The genetic differentiation coefficient within progenies was 0.139, whereas the fixation rate was about 27%. The estimate of the effective size revealed that the genetic representativeness of descent was lower than expected in random mating progenies: The analyzed samples corresponded to only 13.2 individuals of an ideal panmictic population. In environmental recovery programs, seeds, preferably from different fruits, should be collected from 95 trees to preserve the genetic diversity of the species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reciprocal selection between interacting species is a major driver of biodiversity at both the genetic and the species level. This reciprocal selection, or coevolution, has led to the diversification of two highly diverse and abundant groups of organisms, flowering plants and their insect herbivores. In heterogeneous environments, the outcome of coevolved species interactions is influenced by the surrounding community and/or the abiotic environment. The process of adaptation allows species to adapt to their local conditions and to local populations of interacting species. However, adaptation can be disrupted or slowed down by an absence of genetic variation or by increased inbreeding, together with the following inbreeding depression, both of which are common in small and isolated populations that occur in fragmented environments. I studied the interaction between a long-lived plant Vincetoxicum hirundinaria and its specialist herbivore Abrostola asclepiadis in the southwestern archipelago of Finland. I focused on mutual local adaptation of plants and herbivores, which is a demonstration of reciprocal selection between species, a prerequisite for coevolution. I then proceeded to investigate the processes that could potentially hamper local adaptation, or species interaction in general, when the population size is small. I did this by examining how inbreeding of both plants and herbivores affects traits that are important for interaction, as well as among-population variation in the effects of inbreeding. In addition to bi-parental inbreeding, in plants inbreeding can arise from self-fertilization which has important implications for mating system evolution. I found that local adaptation of the plant to its herbivores varied among populations. Local adaptation of the herbivore varied among populations and years, being weaker in populations that were most connected. Inbreeding caused inbreeding depression in both plants and herbivores. In some populations inbreeding depression in herbivore biomass was stronger in herbivores feeding on inbred plants than in those feeding on outbred ones. For plants it was the other way around: inbreeding depression in anti-herbivore resistance decreased when the herbivores were inbred. Underlying some of the among-population variation in the effects of inbreeding is variation in plant phenolic compounds. However, variation in the modification of phenolic compounds in the digestive tract of the herbivore did not explain the inbreeding depression in herbivore biomass. Finally, adult herbivores had a preference for outbred host plants for egg deposition, and herbivore inbreeding had a positive effect on egg survival when the eggs were exposed to predators and parasitoids. These results suggest that plants and herbivores indeed exert reciprocal selection, as demonstrated by the significant local adaptation of V. hirundinaria and A. asclepiadis to one another. The most significant cause of disruption of the local adaptation of herbivore populations was population connectivity, and thus probably gene flow. In plants local adaptation tended to increase with increasing genetic variation. Whether or not inbreeding depression occurred varied according to the life-history stage of the herbivore and/or the plant trait in question. In addition, the effects of inbreeding strongly depended on the population. Taken together, inbreeding modified plant-herbivore interactions at several different levels, and can thus affect the strength of reciprocal selection between species. Thus inbreeding has the potential to affect the outcome of coevolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’auto-incompatibilité (AI) est une barrière reproductive prézygotique qui permet aux pistils d’une fleur de rejeter leur propre pollen. Les systèmes d’AI peuvent prévenir l’autofertilisation et ainsi limiter l’inbreeding. Dans l’AI gamétophytique, le génotype du pollen détermine son propre phénotype d’incompatibilité, et dans ce système, les déterminants mâles et femelles de l’AI sont codés par un locus multigénique et multi-allélique désigné le locus S. Chez les Solanaceae, le déterminant femelle de l’AI est une glycoprotéine stylaire extracellulaire fortement polymorphique possédant une activité ribonucléase et désignée S-RNase. Les S-RNases montrent un patron caractéristique de deux régions hypervariables (HVa et HVb), responsables de leur détermination allélique, et cinq régions hautement conservées (C1 à C5) impliquées dans l’activité catalytique ou la stabilisation structurelle de ces protéines. Dans ce travail, nous avons investigué plusieurs caractéristiques des S-RNases et identifié un nouveau ligand potentiel aux S-RNases chez Solanum chacoense. L’objectif de notre première étude était l’élucidation du rôle de la région C4 des S-RNases. Afin de tester l’hypothèse selon laquelle la région C4 serait impliquée dans le repliement ou la stabilité des S-RNases, nous avons généré un mutant dans lequel les quatre résidus chargés présents en région C4 furent remplacés par des résidus glycine. Cette protéine mutante ne s’accumulant pas à des niveaux détectables, la région C4 semble bien avoir un rôle structurel. Afin de vérifier si C4 est impliquée dans une liaison avec une autre protéine, nous avons généré le mutant R115G, dans lequel un acide aminé chargé fût éliminé afin de réduire les affinités de liaison dans cette région. Ce mutant n’affectant pas le phénotype de rejet pollinique, il est peu probable que la région C4 soit impliquée dans la liaison des S-RNases avec un ligand ou leur pénétration à l’intérieur des tubes polliniques. Enfin, le mutant K113R, dans lequel le seul résidu lysine conservé parmi toutes les S-RNases fût remplacé par un résidu arginine, fût généré afin de vérifier si cette lysine était un site potentiel d’ubiquitination des S-RNases. Toutefois, la dégradation des S-RNases ne fût pas inhibée. Ces résultats indiquent que C4 joue probablement un rôle structurel de stabilisation des S-RNases. Dans une seconde étude, nous avons analysé le rôle de la glycosylation des S-RNases, dont un site, en région C2, est conservé parmi toutes les S-RNases. Afin d’évaluer la possibilité que les sucres conjugués constituent une cible potentielle d’ubiquitination, nous avons généré une S11-RNase dont l‘unique site de glycosylation en C2 fût éliminé. Ce mutant se comporte de manière semblable à une S11-RNase de type sauvage, démontrant que l’absence de glycosylation ne confère pas un phénotype de rejet constitutif du pollen. Afin de déterminer si l’introduction d’un sucre dans la région HVa de la S11-RNase pourrait affecter le rejet pollinique, nous avons généré un second mutant comportant un site additionnel de glycosylation dans la région HVa et une troisième construction qui comporte elle aussi ce nouveau site mais dont le site en région C2 fût éliminé. Le mutant comportant deux sites de glycosylation se comporte de manière semblable à une S11-RNase de type sauvage mais, de manière surprenante, le mutant uniquement glycosylé en région HVa peut aussi rejeter le pollen d’haplotype S13. Nous proposons que la forme non glycosylée de ce mutant constitue un allèle à double spécificité, semblable à un autre allèle à double spécificité préalablement décrit. Il est intéressant de noter que puisque ce phénotype n’est pas observé dans le mutant comportant deux sites de glycosylation, cela suggère que les S-RNases ne sont pas déglycosylées à l’intérieur du pollen. Dans la dernière étude, nous avons réalisé plusieurs expériences d’interactions protéine-protéine afin d’identifier de potentiels interactants polliniques avec les S-RNases. Nous avons démontré que eEF1A, un composant de la machinerie de traduction chez les eucaryotes, peut lier une S11-RNase immobilisée sur résine concanavaline A. Des analyses de type pull-down utilisant la protéine eEF1A de S. chacoense étiquetée avec GST confirment cette interaction. Nous avons aussi montré que la liaison, préalablement constatée, entre eEF1A et l’actine est stimulée en présence de la S11-RNase, bien que cette dernière ne puisse directement lier l’actine. Enfin, nous avons constaté que dans les tubes polliniques incompatibles, l’actine adopte une structure agrégée qui co-localise avec les S-RNases. Ces résultats suggèrent que la liaison entre eEF1A et les S-RNases pourrait constituer un potentiel lien fonctionnel entre les S-RNases et l’altération du cytosquelette d’actine observée lors des réactions d’AI. Par ailleurs, si cette liaison est en mesure de titrer les S-RNases disponibles à l’intérieur du tube pollinique, ce mécanisme pourrait expliquer pourquoi des quantités minimales ou « seuils » de S-RNases sont nécessaires au déclenchement des réactions d’AI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Six microsatellite loci were used to quantify the mating system of two small fragmented populations (Selviria - SEL and Aparecida do Tabuado APT, Mato Grosso do Sul State) and isolated trees in pastures, of the bat-pollinated tropical tree Hymenaea stignocarpa, growing in the Center-west region of Brazil. In SEL population, seeds were collected from 11 mother-trees; in APT, from three trees and, in the case of isolated trees, from six individuals growing at least 500 m apart in pastures. To investigate if there are differences on mating system between trees in populations and isolated trees, trees from populations were pooled as a group and, likewise, the isolated trees were pooled to another group. The outcrossing rate was higher in the populations ((t) over cap (m)=0.873) than in isolated trees ((t) over cap (m)=0.857), but the difference was not significant. Significant and high differences between multi-locus and single-locus outcrossing rate were detected in populations ((t) over cap (m)-(t) over cap (s)=0.301, P<0.05) and isolated trees (<(t)over cap>(m)-(t) over cap (s) = 0.276, P < 0.05), suggesting mating between relatives. Higher paternity correlation was observed in trees from population (<(r)over cap>(p)=0.636) than in isolated trees ((r) over cap (p)=0.377), indicating the occurrence of some correlated matings and that part of offspring are full-sibs. It was not observed increased in self-fertilization rate in isolated trees in pastures. In general terms, the unique observed difference in mating system between populations and isolate trees was the high rate of correlated matings in trees from populations, due probably to the small distance among coespecifics and the pollinator behavior, visiting near trees.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Under greenhouse conditions, Epidendrum nocturnum Jacq. plants produce fruits by both self-fertilization and cleistogamy. Although adapted to these reproductive processes the species respond also to cross-pollination. Seeds without embryos and with one embryo are usual but occasionally seeds with two, three or four embryos are produced. Multiple embryos are formed by polyembryony and apomixis. © 1985 Annals of Botany Company.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Six microsatellite loci were used to quantify the mating system of two small fragmented populations (Selviria - SEL and Aparecida do Tabuado - APT, Mato Grosso do Sul State) and isolated trees in pastures, of the bat-pollinated tropical tree Hymenaea stignocarpa, growing in the Center-west region of Brazil. In SEL population, seeds were collected from 11 mother-trees; in APT, from three trees and, in the case of isolated trees, from six individuals growing at least 500 m apart in pastures. To investigate if there are differences on mating system between trees in populations and isolated trees, trees from populations were pooled as a group and, likewise, the isolated trees were pooled to another group. The outcrossing rate was higher in the populations (t̂ m= 0.873) than in isolated trees (t̂ m=0.857), but the difference was not significant. Significant and high differences between multi-locus and single-locus outcrossing rate were detected in populations (t̂ m- t̂ s=0.301, P<0.05) and isolated trees (t̂ m- t̂ s=0.276, P<0.05), suggesting mating between relatives. Higher paternity correlation was observed in trees from population (r̂ p=0.636) than in isolated trees (r̂ p=0.377), indicating the occurrence of some correlated matings and that part of offspring are full-sibs. It was not observed increased in self-fertilization rate in isolated trees in pastures. In general terms, the unique observed difference in mating system between populations and isolate trees was the high rate of correlated matings in trees from populations, due probably to the small distance among coespecifics and the pollinator behavior, visiting near trees.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To assess the genetic diversity and genetic structure parameters, nine populations of Oryza glumaepatula from the Amazon biome, four from the Pantanal biome, and one collected at Rio Xingu, Mato Grosso, totaling 14 populations and 333 individuals were studied with isozyme markers. Six loci were evaluated showing a moderate allozyme variability (A = 1.21, P = 20.7%, Ho = 0.005, He = 0.060). The populations from the Pantanal biome showed higher diversity levels than the Amazon biome. High genetic differentiation among the populations, expected for self-fertilizing species, was observed (FST=0.763), with lower differentiation found among the Pantanal populations (FST=0.501). The average apparent outcrossing rate was higher for the Pantanal populations (t a = 0.092) than for the Amazonian populations (t a = 0.003), while the average for the 14 populations was 0.047, in accordance with a self-fertilization mating system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar a diversidade genética, entre e dentro de progênies de dendezeiro tipo dura, de origem Deli. A caracterização genética foi feita com uso de marcadores microssatélites em 24 progênies usadas na produção comercial de sementes, sendo 22 provenientes de autofecundação e duas de cruzamentos entre irmãos completos. Foi realizada análise de variância molecular entre e dentro das progênies, com posterior construção de um dendrograma. Observou-se baixa variabilidade genética nas progênies, com média de 1,32 alelos por loco e variância genética total igual a 0,3241. A maior parte da variação ocorreu entre progênies. A menor variabilidade genética dentro das progênies pode ser explorada nos cruzamentos com progênies endogâmicas de outras origens, o que facilitaria o alcance de heterose para o desenvolvimento de novas variedades.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of the genetic structure of wild plant populations is essential for their management and conservation. Several DNA markers have been used in such studies, as well as isozyme markers. In order to provide a better comprehension of the results obtained and a comparison between markers which will help choose tools for future studies in natural populations of Oryza glumaepatula, a predominantly autogamous species, this study used both isozymes and microsatellites to assess the genetic diversity and genetic structure of 13 populations, pointing to similarities and divergences of each marker, and evaluating the relative importance of the results for studies of population genetics and conservation. A bulk sample for each population was obtained, by sampling two to three seeds of each plant, up to a set of 50 seeds. Amplified products of eight SSR loci were electrophoresed on non-denaturing polyacrylamide gels, and the fragments were visualized using silver staining procedure. Isozyme analyses were conducted in polyacrylamide gels, under a discontinuous system, using six enzymatic loci. SSR loci showed higher mean levels of genetic diversity (A=2.83, p=0.71, A(P)=3.17, H-o=0.081, H-e=0.351) than isozyme loci (A=1.20, p=0.20, A(P)=1.38, H-o=0.006, H-e=0.056). Interpopulation genetic differentiation detected by SSR loci (R-ST=0.631, equivalent to F-ST=0.533) was lower than that obtained with isozymes (F-ST=0.772). However, both markers showed high deviation from Hardy-Weinberg expectations (F-IS=0.744 and 0.899, respectively for SSR and isozymes). The mean apparent outcrossing rate for SSR ((t) over bar (a)=0.14) was higher than that obtained using isozymes ((t) over bar (a)=0.043), although both markers detected lower levels of outcrossing in Amazonia compared to the Pantanal. The migrant number estimation was also higher for SSR (Nm=0.219) than isozymes (Nm=0.074), although a small number for both markers was expected due to the mode of reproduction of this species, defined as mixed with predominance of self fertilization. No correlation was obtained between genetic and geographic distances with SSR, but a positive correlation was found between genetic and geographic distances with isozymes. We conclude that these markers are divergent in detecting genetic diversity parameters in O. glumaepatula and that microsatellites are powerful for detecting information at the intra-population level, while isozymes are more powerful for inter-population diversity, since clustering of populations agreed with the expectations based on the geographic distribution of the populations using this marker. Rev. Biol. Trop. 60 (4): 1463-1478. Epub 2012 December 01.