986 resultados para selective growth


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The narrow stripe selective growth of the InGaAlAs bulk waveguides and InGaAlAs MQW waveguides was first investigated. Flat and clear interfaces were obtained for the selectively grown InGaAlAs waveguides under optimized growth conditions. These selectively grown InGaAlAs waveguides were covered by specific InP layers, which can keep the waveguides from being oxidized during the fabrication of devices. PL peak wavelength shifts of 70 nm for the InGaAlAs bulk waveguides and 73 nm for the InGaAlAs MQW waveguides were obtained with a small mask stripe width varying from 0 to 40 gm, and were interpreted in considering both the migration effect from the masked region (MMR) and the lateral vapor diffusion effect (LVD). The quality of the selectively grown InGaAlAs MQW waveguides was confirmed by the PL peak intensity and the PL FWHM. Using the narrow stripe selectively grown InGaAlAs MQW waveguides, then the buried heterostructure (BH) lasers were fabricated by a developed unselective regrowth method, instead of conventional selective regrowth. The InGaAlAs MQW BH lasers exhibit good performance characteristics, with a high internal differential quantum efficiency of about 85% and an internal loss of 6.7 cm(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High density, uniform GaN nanodot arrays with controllable size have been synthesized by using template-assisted selective growth. The GaN nanodots with average diameter 40nm, 80nm and 120nm were selectively grown by metalorganic chemical vapor deposition (MOCVD) on a nano-patterned SiO2/GaN template. The nanoporous SiO2 on GaN surface was created by inductively coupled plasma etching (ICP) using anodic aluminum oxide (AAO) template as a mask. This selective regrowth results in highly crystalline GaN nanodots confirmed by high resolution transmission electron microscopy. The narrow size distribution and uniform spatial position of the nanoscale dots offer potential advantages over self-assembled dots grown by the Stranski–Krastanow mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ideal starting condition for selective growth experiments is one having a layer of randomly-oriented nuclei adjacent to a matrix with negligible orientational variation but sufficient stored energy to promote growth. In practice, cutting or deformation processes are used in an attempt to approximate these ideal conditions, but the degree to which this is achieved has not been rigorously quantified. In this work, Fe-3wt%Si single crystals were cut or deformed using six different processes. The variation in texture with distance from the cut or deformed surface was measured using electron backscatter diffraction (EBSD) in a field emission gun scanning electron microscope (FEG-SEM) in order to assess the ability of each process to create conditions suitable for selective growth experiments. While grooving with a machine tool produced the best spread of orientations at the cut surface, the suitability of this process is diminished by the presence of a differently-textured deformed layer between the cut surface and the single crystal matrix. Grinding produced a less ideal distribution of orientations at the cut surface, but the presence of these orientations in a very thin layer adjacent to the matrix makes this process preferable for preparing crystals for selective growth experiments, provided the results are corrected for the deviation in the distribution of nuclei orientations from a random distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Fe-2.8%Si single crystal was scratched in order to randomise the texture in the neighbourhood of the notch. Annealing resulted in recrystallization and grain growth starting from the deformed zone. Misorientations between the single crystal matrix and the grown grains were gathered and were studied in order to investigate the possibility for selective growth based on a specific misorientation. However, instead of studying the misorientation angle or axis profiles separately in a 1D or 2D projection a full misorientation analysis was carried out in the 3-dimensional Rodrigues-Frank misorientation space, which offers an unambiguous interpretation of the data because no features are hidden or masked by a projection. It is concluded that the selective growth phenomenon following the <110>26.5deg misorientation relationship is strongly supported by the gathered orientation data, after appropriately normalizing these data with respect to a random misorientation distribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of the substrate temperature, III/V flux ratio, and mask geometry on the selective area growth of GaN nanocolumns is investigated. For a given set of growth conditions, the mask design (diameter and pitch of the nanoholes) is found to be crucial to achieve selective growth within the nanoholes. The local III/V flux ratio within these nanoholes is a key factor that can be tuned, either by modifying the growth conditions or the mask geometry. On the other hand, some specific growth conditions may lead to selective growth but not be suitable for subsequent vertical growth. With optimized conditions, ordered GaN nanocolumns can be grown with a wide variety of diameters. In this work, ordered GaN nanocolumns with diameter as small as 50 nm are shown.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The results of large-scale (∼109 atoms) numerical simulations of the growth of different-diameter vertically-aligned single-walled carbon nanotubes in plasma systems with different sheath widths and in neutral gases with the same operating parameters are reported. It is shown that the nanotube lengths and growth rates can be effectively controlled by varying the process conditions. The SWCNT growth rates in the plasma can be up to two orders of magnitude higher than in the equivalent neutral gas systems. Under specific process conditions, thin SWCNTs can grow much faster than their thicker counterparts despite the higher energies required for catalyst activation and nanotube nucleation. This selective growth of thin SWCNTs opens new avenues for the solution of the currently intractable problem of simultaneous control of the nanotube chirality and length during the growth stage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the growth of well-ordered InAs QD chains by molecular beam epitaxy system. In order to analyze and extend the results of our experiment, a detailed kinetic Monte Carlo simulation is developed to investigate the effects of different growth conditions to the selective growth of InAs quantum dots (QDs). We find that growth temperature plays a more important role than growth rate in the spatial ordering of the QDs. We also investigate the effect of periodic stress on the shape of QDs in simulation. The simulation results are in good qualitative agreement with our experiment. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A promising approach for positioning of InAs islands on (110)GaAs is demonstrated. By combining self-assembly of quantum dots with solid source molecular beam epitaxy (MBE) on cleaved edge of InGaAs/GaAs superlattice (SL), linear alignment of InAs islands on the InGaAs strain layers have been fabricated The cleaved edge of InGaAs/GaAs SL acts as strain nanopattern for InAs selective growth. Indium atoms incident on the surface will preferentially migrate to InGaAs regions where favorable bonding sites are available. The strain nanopattern's effect is studied by the different indium fraction and thickness of InxGa1-xAs/GaAs SL. The ordering of the InAs islands is found to depend on the properties of the underlying InGaAs strain layers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Globally, agriculture is being intensified with mechanization and increased use of synthetic fertilizers and pesticides. There has been a scaling up of production to satisfy the demands of supermarket distribution. Problems associated with intensification of production, trade globalisation and a larger market demand for greater volumes of fresh produce, include consumers' concern about pesticide residues and leaching of nutrients and pesticides into the environment, as well as increases in the transmission of human food-poisoning pathogens on raw vegetables and in fruit juices. The first part of this research was concerned with the evaluation of a biological control strategy for soil-borne pathogens, these are difficult to eliminate and the chemicals of which the most effective fumigants e.g. methyl bromide, are being withdrawn form use. Chitin-containing crustaceans shellfish waste was investigated as a selective growth substrate amendment in the field, in glasshouse and in storage trials against Sclerotinia disease of Helianthus tuberosus, Phytophthora fragariae disease of Fragaria vesca and Fusarium disease of Dianthus. Results showed that addition to shellfish waste stimulated substrate microbial populations and lytic activity and induced plant defense proteins, namely chitinases and cellulases. Protective effects were seen in all crop models but the results indicate that further trials are required to confirm long-term efficacy. The second part of the research investigated the persistence of enteric bacteria in raw salad vegetables using model food poisoning isolates. In clinical investigations plants are sampled for bacterial contamination but no attempt is made to differentiate between epiphytes and endophytes. Results here indicate that the mode isolates persist endophytically thereby escaping conventional chlorine washes and they may also induce host defenses, which results in their suppression and in negative results in conventional plate count screening. Finally a discussion of criteria that should be considered for a HACCP plan for safe raw salad vegetable production is presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Substantive evidence implicates vitamin D receptor (VDR) or its natural ligand 1a,25-(OH)2 D3 in modulation of tumor growth. However, both human and animal studies indicate tissue-specificity of effect. Epidemiological studies show both inverse and direct relationships between serum 25(OH)D levels and common solid cancers. VDR ablation affects carcinogen-induced tumorigenesis in a tissue-specific manner in model systems. Better understanding of the tissue-specificity of vitamin D-dependent molecular networks may provide insight into selective growth control by the seco-steroid, 1a,25-(OH)2 D3. This commentary considers complex factors that may influence the cell- or tissue-specificity of 1a,25-(OH)2 D3/VDR growth effects, including local synthesis, metabolism and transport of vitamin D and its metabolites, vitamin D receptor (VDR) expression and ligand-interactions, 1a,25-(OH)2 D3 genomic and non-genomic actions, Ca2+ flux, kinase activation, VDR interactions with activating and inhibitory vitamin D responsive elements (VDREs) within target gene promoters, VDR coregulator recruitment and differential effects on key downstream growth regulatory genes. We highlight some differences of VDR growth control relevant to colonic, esophageal, prostate, pancreatic and other cancers and assess the potential for development of selective prevention or treatment strategies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Focused ion beam (FIB) milling system has been used to create nanosized patterns as the template for patterned growth of carbon nanotubes on Si substrate surface without predeposition of metal catalysts. Carbon nanotubes only nucleate and grow on the template under controlled pyrolysis of iron phthalocyanine at 1000 °C. The size, growth direction, and density of the patterned nanotubes can be controlled under different growth conditions and template sizes. Atomic force microscopy and electron microscopy analyses reveal that the selective growth on the FIB template is due to its special surface morphology and crystalline structure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The chronic ethanol intake influence on the gluthatione S-transferase (GST-P) and transforming growth factor alpha (TGF-alpha) expression in remodeling/persistent preneoplastic lesions (PNLs) was evaluated in the resistant hepatocyte model. Male Wistar rats were allocated into five groups: G1, non-treated, fed water and chow ad libitum; G2, non-treated and pair-fed chow (restricted to match that of G3 group) and a maltodextrin (MD) solution in tap water (matched ethanol-derived calories); G3, fed 5% ethanol in drinking water and chow ad libitum; G4, diethylnitrosamine (DEN, 200 mg/kg, body weight) plus 200 parts per million of 2-acetylaminofluorene (2-AAF) for 3 weeks and pair-fed chow (restricted to match that of G5 group) and an MD solution in tap water (matched ethanol-derived calories); G5, DEN/2-AAF treatment, fed ethanol 5% and chow ad libitum. All animals were subjected to 70% partial hepatectomy at week 3 and sacrificed at weeks 12 or 22, respectively. Liver samples were collected for histological analysis or immunohistochemical expression of GST-P, TGF-alpha and proliferating cell nuclear antigen or zymography for matrix metalloproteinases-2 and -9. At the end of ethanol treatment, there was a significant increase in the percentage of liver area occupied by persistent GST-P-positive PNLs, the number of TGF-alpha-positive PNLs and the development of liver tumors in ethanol-fed and DEN/2-AAF-treated groups (G5 versus G4, P < 0.001). In addition, ethanol feeding led to a significant increase in cell proliferation mainly in remodeling and persistent PNLs with immunoreactivity for TGF-alpha at week 22 (P < 0.001). Gelatinase activities were not altered by ethanol treatment. The results demonstrated that ethanol enhances the selective growth of PNL with double expression of TGF-alpha and GST-P markers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Precise and reproducible surface nanopatterning is the key for a successful ordered growth of GaN nanocolumns. In this work, we point out the main technological issues related to the patterning process, mainly surface roughness and cleaning, and mask adhesion to the substrate. We found that each of these factors, process-related, has a dramatic impact on the subsequent selective growth of the columns inside the patterned holes. We compare the performance of e-beam lithography, colloidal lithography, and focused ion beam in the fabrication of hole-patterned masks for ordered columnar growth. These results are applicable to the ordered growth of nanocolumns of different materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We recently have shown that selective growth of transplanted normal hepatocytes can be achieved in a setting of cell cycle block of endogenous parenchymal cells. Thus, massive proliferation of donor-derived normal hepatocytes was observed in the liver of rats previously given retrorsine (RS), a naturally occurring alkaloid that blocks proliferation of resident liver cells. In the present study, the fate of nodular hepatocytes transplanted into RS-treated or normal syngeneic recipients was followed. The dipeptidyl peptidase type IV-deficient (DPPIV−) rat model for hepatocyte transplantation was used to distinguish donor-derived cells from recipient cells. Hepatocyte nodules were chemically induced in Fischer 344, DPPIV+ rats; livers were then perfused and larger (>5 mm) nodules were separated from surrounding tissue. Cells isolated from either tissue were then injected into normal or RS-treated DPPIV− recipients. One month after transplantation, grossly visible nodules (2–3 mm) were seen in RS-treated recipients transplanted with nodular cells. They grew rapidly, occupying 80–90% of the host liver at 2 months, and progressed to hepatocellular carcinoma within 4 months. By contrast, no liver nodules developed within 6 months when nodular hepatocytes were injected into the liver of recipients not exposed to RS, although small clusters of donor-derived cells were present in these animals. Taken together, these results directly point to a fundamental role played by the host environment in modulating the growth and the progression rate of altered cells during carcinogenesis. In particular, they indicate that conditions associated with growth constraint of the host tissue can drive tumor progression in vivo.