913 resultados para segmentation and reverberation
Resumo:
The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work
Resumo:
This paper presents methods for moving object detection in airborne video surveillance. The motion segmentation in the above scenario is usually difficult because of small size of the object, motion of camera, and inconsistency in detected object shape etc. Here we present a motion segmentation system for moving camera video, based on background subtraction. An adaptive background building is used to take advantage of creation of background based on most recent frame. Our proposed system suggests CPU efficient alternative for conventional batch processing based background subtraction systems. We further refine the segmented motion by meanshift based mode association.
Resumo:
This work presents an efficient method for volume rendering of glioma tumors from segmented 2D MRI Datasets with user interactive control, by replacing manual segmentation required in the state of art methods. The most common primary brain tumors are gliomas, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the pre- operative tumor volume is essential. Tumor portions were automatically segmented from 2D MR images using morphological filtering techniques. These seg- mented tumor slices were propagated and modeled with the software package. The 3D modeled tumor consists of gray level values of the original image with exact tumor boundary. Axial slices of FLAIR and T2 weighted images were used for extracting tumors. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming proc- ess and is prone to error. These defects are overcome in this method. Authors verified the performance of our method on several sets of MRI scans. The 3D modeling was also done using segmented 2D slices with the help of a medical software package called 3D DOCTOR for verification purposes. The results were validated with the ground truth models by the Radi- ologist.
Resumo:
Sketches are commonly used in the early stages of design. Our previous system allows users to sketch mechanical systems that the computer interprets. However, some parts of the mechanical system might be too hard or too complicated to express in the sketch. Adding speech recognition to create a multimodal system would move us toward our goal of creating a more natural user interface. This thesis examines the relationship between the verbal and sketch input, particularly how to segment and align the two inputs. Toward this end, subjects were recorded while they sketched and talked. These recordings were transcribed, and a set of rules to perform segmentation and alignment was created. These rules represent the knowledge that the computer needs to perform segmentation and alignment. The rules successfully interpreted the 24 data sets that they were given.
Resumo:
The application of automatic segmentation methods in lesion detection is desirable. However, such methods are restricted by intensity similarities between lesioned and healthy brain tissue. Using multi-spectral magnetic resonance imaging (MRI) modalities may overcome this problem but it is not always practicable. In this article, a lesion detection approach requiring a single MRI modality is presented, which is an improved method based on a recent publication. This new method assumes that a low similarity should be found in the regions of lesions when the likeness between an intensity based fuzzy segmentation and a location based tissue probabilities is measured. The usage of a normalized similarity measurement enables the current method to fine-tune the threshold for lesion detection, thus maximizing the possibility of reaching high detection accuracy. Importantly, an extra cleaning step is included in the current approach which removes enlarged ventricles from detected lesions. The performance investigation using simulated lesions demonstrated that not only the majority of lesions were well detected but also normal tissues were identified effectively. Tests on images acquired in stroke patients further confirmed the strength of the method in lesion detection. When compared with the previous version, the current approach showed a higher sensitivity in detecting small lesions and had less false positives around the ventricle and the edge of the brain
Resumo:
Speech perception runs smoothly and automatically when there is silence in the background, but when the speech signal is degraded by background noise or by reverberation, effortful cognitive processing is needed to compensate for the signal distortion. Previous research has typically investigated the effects of signal-to-noise ratio (SNR) and reverberation time in isolation, whilst few have looked at their interaction. In this study, we probed how reverberation time and SNR influence recall of words presented in participants' first- (L1) and second-language (L2). A total of 72 children (10 years old) participated in this study. The to-be-recalled wordlists were played back with two different reverberation times (0.3 and 1.2 s) crossed with two different SNRs (+3 dBA and +12 dBA). Children recalled fewer words when the spoken words were presented in L2 in comparison with recall of spoken words presented in L1. Words that were presented with a high SNR (+12 dBA) improved recall compared to a low SNR (+3 dBA). Reverberation time interacted with SNR to the effect that at +12 dB the shorter reverberation time improved recall, but at +3 dB it impaired recall. The effects of the physical sound variables (SNR and reverberation time) did not interact with language. © 2016 Hurtig, Keus van de Poll, Pekkola, Hygge, Ljung and Sörqvist.
Resumo:
Human intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis. © 2012 IEEE.
Resumo:
In this thesis two major topics inherent with medical ultrasound images are addressed: deconvolution and segmentation. In the first case a deconvolution algorithm is described allowing statistically consistent maximum a posteriori estimates of the tissue reflectivity to be restored. These estimates are proven to provide a reliable source of information for achieving an accurate characterization of biological tissues through the ultrasound echo. The second topic involves the definition of a semi automatic algorithm for myocardium segmentation in 2D echocardiographic images. The results show that the proposed method can reduce inter- and intra observer variability in myocardial contours delineation and is feasible and accurate even on clinical data.
Resumo:
Myocardial perfusion quantification by means of Contrast-Enhanced Cardiac Magnetic Resonance images relies on time consuming frame-by-frame manual tracing of regions of interest. In this Thesis, a novel automated technique for myocardial segmentation and non-rigid registration as a basis for perfusion quantification is presented. The proposed technique is based on three steps: reference frame selection, myocardial segmentation and non-rigid registration. In the first step, the reference frame in which both endo- and epicardial segmentation will be performed is chosen. Endocardial segmentation is achieved by means of a statistical region-based level-set technique followed by a curvature-based regularization motion. Epicardial segmentation is achieved by means of an edge-based level-set technique followed again by a regularization motion. To take into account the changes in position, size and shape of myocardium throughout the sequence due to out of plane respiratory motion, a non-rigid registration algorithm is required. The proposed non-rigid registration scheme consists in a novel multiscale extension of the normalized cross-correlation algorithm in combination with level-set methods. The myocardium is then divided into standard segments. Contrast enhancement curves are computed measuring the mean pixel intensity of each segment over time, and perfusion indices are extracted from each curve. The overall approach has been tested on synthetic and real datasets. For validation purposes, the sequences have been manually traced by an experienced interpreter, and contrast enhancement curves as well as perfusion indices have been computed. Comparisons between automatically extracted and manually obtained contours and enhancement curves showed high inter-technique agreement. Comparisons of perfusion indices computed using both approaches against quantitative coronary angiography and visual interpretation demonstrated that the two technique have similar diagnostic accuracy. In conclusion, the proposed technique allows fast, automated and accurate measurement of intra-myocardial contrast dynamics, and may thus address the strong clinical need for quantitative evaluation of myocardial perfusion.
Resumo:
In this paper, we propose novel methodologies for the automatic segmentation and recognition of multi-food images. The proposed methods implement the first modules of a carbohydrate counting and insulin advisory system for type 1 diabetic patients. Initially the plate is segmented using pyramidal mean-shift filtering and a region growing algorithm. Then each of the resulted segments is described by both color and texture features and classified by a support vector machine into one of six different major food classes. Finally, a modified version of the Huang and Dom evaluation index was proposed, addressing the particular needs of the food segmentation problem. The experimental results prove the effectiveness of the proposed method achieving a segmentation accuracy of 88.5% and recognition rate equal to 87%
Resumo:
Mayer H. Segmentation and segregation patterns of women-owned high-tech firms in four metropolitan regions in the United States, Regional Studies. The number of women starting and owning a business has increased dramatically and female entrepreneurs are entering non-traditional sectors such as high technology, construction and manufacturing. This paper investigates the trends in high-tech entrepreneurship by women in four US metropolitan regions (Silicon Valley, California; Boston, Massachusetts; Washington, DC; and Portland, Oregon). The research examines the sectoral and spatial segmentation patterns of women-owned high-tech firms. Although women are entering non-traditional sectors, the research finds that women entrepreneurs tend to own businesses in female-typed high-tech sectors. In established high-tech regions like Silicon Valley and Boston, male-typed and female-typed women-owned high-tech firms differ significantly in terms of sectoral and spatial segmentation regardless of firm age. While differences between male-typed and female-typed firms are not significant at the regional level for Washington, DC, the analysis shows significant intra-metropolitan differences for the female-typed high-tech firms. The paper concludes that sectoral and spatial segmentation are powerful dynamics that shape business ownership by women in high technology.
Resumo:
The synapses in the cerebral cortex can be classified into two main types, Gray’s type I and type II, which correspond to asymmetric (mostly glutamatergic excitatory) and symmetric (inhibitory GABAergic) synapses, respectively. Hence, the quantification and identification of their different types and the proportions in which they are found, is extraordinarily important in terms of brain function. The ideal approach to calculate the number of synapses per unit volume is to analyze 3D samples reconstructed from serial sections. However, obtaining serial sections by transmission electron microscopy is an extremely time consuming and technically demanding task. Using focused ion beam/scanning electron microscope microscopy, we recently showed that virtually all synapses can be accurately identified as asymmetric or symmetric synapses when they are visualized, reconstructed, and quantified from large 3D tissue samples obtained in an automated manner. Nevertheless, the analysis, segmentation, and quantification of synapses is still a labor intensive procedure. Thus, novel solutions are currently necessary to deal with the large volume of data that is being generated by automated 3D electron microscopy. Accordingly, we have developed ESPINA, a software tool that performs the automated segmentation and counting of synapses in a reconstructed 3D volume of the cerebral cortex, and that greatly facilitates and accelerates these processes.
Resumo:
We present new tools for the segmentation and analysis of musical scores in the OpenMusic computer-aided composition environment. A modular object-oriented framework enables the creation of segmentations on score objects and the implementation of automatic or semi-automatic analysis processes. The analyses can be performed and displayed thanks to customizable classes and callbacks. Concrete examples are given, in particular with the implementation of a semi-automatic harmonic analysis system and a framework for rhythmic transcription.
Resumo:
After advocating flexibilization of non-standard work contracts for many years, some European and international institutions and several policy makers now indicate the standard employment relationship and its regulation as a cause of segmentation between the labour market of "guaranteed" insiders, employed under permanent contracts with effective protection against unfair dismissal, and the market of the “not-guaranteed” outsiders, working with non-standard contracts. Reforms of employment legislation are therefore being promoted and approved in different countries, allegedly aiming to balance the legal protection afforded to standard and non-standard workers. This article firstly argues that this approach is flawed as it oversimplifies reasons of segmentation as it concentrates on an “insiders-outsiders” discourse that cannot easily be transplanted in continental Europe. After reviewing current legislative changes in Italy, Spain and Portugal, it is then argued that lawmakers are focused on “deregulation” rather than “balancing protection” when approving recent reforms. Finally, the mainstream approach to segmentation and some of its derivative proposals, such as calls to introduce a “single permanent contract”, are called into question, as they seem to neglect the essential role of job protection in underpinning the effectiveness of fundamental and constitutional rights at the workplace.