990 resultados para sedimentation rates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the Scotia Sea, the axis of the Antarctic Circumpolar Current (ACC) is geographically confined, and sediments therefore contain a record of palaeo-flow speed uncomplicated by ACC axis migration. We outline Holocene and Last Glacial Maximum (LGM) current-controlled sedimentation using data from 3.5-kHz profiles, cores and current meter moorings. Geophysical surveys show areas of erosion and deposition controlled by Neogene basement topography. Deposition occurs in mounded sediment drifts or flatter areas, where 500-1000 m of sediment overlies acoustic basement. 3.5-kHz profiles show parallel, continuous sub-bottom reflectors with highest sedimentation rates in the centre of the drifts, and reflectors converging towards marginal zones of non-deposition. Locally, on the flanks of continental blocks (e.g. South Georgia), downslope processes are dominant. The absence of mudwaves on the sediment drifts may result from the unsteadiness of ACC flow. A core transect from the ACC axis south to the boundary with the Weddell Gyre shows a southward decrease in biogenic content, controlled by the Polar Front and the spring sea-ice edge. Both these features lay farther north at LGM. The cores have been dated by relative abundance of the radiolarian Cycladophora davisiana, and by changes in the biogenic Ba content, a palaeoproductivity indicator. Sedimentation rates range from 3 to 17 cm/ka. The grain size of Holocene sediments shows a coarsening trend from south to north, consistent with strongest bottom-current flow near the ACC axis, though interpretation is complicated by the presence of biogenic grains. Year-long current meter records indicate mean speeds from 7 cm/s in the south to 12 cm/s in the north, with benthic storm frequency increasing northwards. LGM sediments are predominantly terrigenous and show a clearer northward-coarsening trend, with well-sorted silts in the northern Scotia Sea. Assuming a constant terrigenous source, this implies stronger ACC flow at the LGM, contrasting with weaker Weddell Gyre flow deduced from earlier work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Initial Report of the Deep Sea Drilling Project, detailed studies of Sites 533 (gas hydrates) on the Blake Outer Ridge and 534 (oldest ocean history) in the Blake-Bahama Basin have provided answers to many geological and geophysical questions posed over the decade that deep drilling has been undertaken in this part of the western North Atlantic. The history of drilling and a historical review of key scientific accomplishments have been presented in the Introduction (Gradstein and Sheridan, this volume). In this final chapter we review highlights of new geological, geophysical and paleoceanographic interpretations presented in this volume, and offer a critical review of this information. We conclude with a listing of some outstanding problems and recommendations for future research, including data collection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A zonation is presented for the oceanic late Middle Jurassic to Late Jurassic of the Atlantic Ocean. The oldest zone, the Stephenolithion bigotii Zone (subdivided into a Stephanolithion hexum Subzone and a Cyclagelosphaera margerelii Subzone), is middle Callovian to early Oxfordian. The Vagalapilla stradneri Zone is middle Oxfordian to Kimmeridgian. The Conusphaera mexicana Zone, subdivided into a lower Hexapodorhabdus cuvillieri Subzone and a Polycostella beckmannii Subzone, is the latest Kimmeridgian to Tithonian. Direct correlation of this zonation with the boreal zonation established for Britain and northern France (Barnard and Hay, 1974; Medd, 1982; Hamilton, 1982) is difficult because of poor preservation resulting in low diversity for the cored section at Site 534 and a lack of Tithonian marker species in the boreal realm. Correlations based on dinoflagellates and on nannofossils with stratotype sections (or regions) give somewhat different results. Dinoflagellates give generally younger ages, especially for the Oxfordian to Kimmeridgian part of the recovered section, than do nannofossils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen and carbon stable isotope data of Pyrgo murrhina and flux rates of calcium carbonate in the bio- and magnetostratigraphically dated sediment sequence at DSDP Site 141 were used for a reconstruction of the deep-water circulation in the Northeast Atlantic during Late Miocene and Pliocene times. A distinct change towards reduced advection of deep water recorded near 5.4 Ma is contemporaneous with the cessation of the outflow of the saline Mediterranean water into the Atlantic. During the Pliocene, between 4.5 and 2.75 Ma and between 2.1 and 1.8 Ma, North Atlantic Deep Water (NADW) circulation was sluggish and Site 141 possibly influenced by Antarctic Bottom Water (AABW). Near 2.75 Ma, the advection of well-oxidized NADW was strongly intensified. This change is related to an onset of major Arctic ice growth and/or a major cooling of NADW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 560-meter-thick sequence of Cenomanian through Pleistocene sediments cored at DSDP Site 462 in the Nauru Basin overlies a 500-meter-thick complex unit of altered basalt flows, diabase sills, and thin intercalated volcaniclastic sediments. The Upper Cretaceous and Cenozoic sediments contain a high proportion of calcareous fossils, although the site has apparently been below the calcite compensation depth (CCD) from the late Mesozoic to the Pleistocene. This fact and the contemporaneous fluctuations of the calcite and opal accumulation rates suggest an irregular influx of displaced pelagic sediments from the shallow margins of the basin to its center, resulting in unusually high overall sedimentation rates for such a deep (5190 m) site. Shallow-water benthic fossils and planktonic foraminifers both occur as reworked materials, but usually are not found in the same intervals of the sediment section. We interpret this as recording separate erosional interludes in the shallow-water and intermediate-water regimes. Lower and upper Cenozoic hiatuses also are believed to have resulted from mid-water events. High accumulation rates of volcanogenic material during Santonian time suggest a corresponding significant volcanic episode. The coincidence of increased carbonate accumulation rates during the Campanian and displacement of shallow-water fossils during the late Campanian-early Maestrichtian with the volcanic event implies that this early event resulted in formation of the island chains around the Nauru Basin, which then served as platforms for initial carbonate deposition.